
Natural Language Processing - Project 2
CSE 398/498-013
Prof. Sihong Xie
Due Date: 11:59pm, Oct 12, 2017 (Phase I), 11:59pm, Oct 31, 2017 (Phase II)

1 Problem Statement

Given a POS-tagged (labeled/training) corpus and un-tagged (unlabeled/test) corpus, train an
HMM model to predict POS tags on the test corpus.

1.1 Three problems and their solutions in HMM

• Likelihood calculation: given a sentence
#»

O and the HMM parameter λ = {A,B, π}, find
p(

#»

O|λ). This problem can be solved using the forward algorithm. See Chap 6.3 of SLP2
for more details.

• Decoding: given a sentence
#»

O and the HMM parameter λ = {A,B, π}, find a
#»

Q∗, a
sequence of POS tags, to maximize p(

#»

Q| #»O, λ). This problem is solved using the Viterbi
algorithm. See Chap 6.4 of SLP2 for more details.

• Model training: given an unlabeled corpus of D sentences D = { #»

O1, . . . ,
#»

OD}, find the
HMM parameter λ = {A,B, π} that maximizes p(D|λ). This problem is solved using the
Baum-Welch algorithm, an example of Expectation-Maximization (EM) algorithm. See
Chap 6.5 of SLP2 for more details.

1.2 Supervised, unsupervised and Semi-supervised HMM

The algorithm in Chap 6.5 is only for the unsupervised learning of HMM: finding λ using D
only. The problem here is that with zero prior knowledge, the learned λ can be inaccurate and
hard to interpret.

On the other hand, a labeled corpus L is given, then a simple way to obtain λ is maximum
likelihood estimation (MLE):

aij =
#(qt = i, qt+1 = j)

#(qt = i)
, bio =

#(qt = i, ot = o)

#(qt = i)
, πi =

#(q1 = i)

of sentences
. (1)

The strength of this approach lies in the prior linguistic information from L: the human knowl-
edge regarding the language is encoded in L and MLE just extracts that. However, if the L is
small, not all linguistic knowledge is covered.

The third way is the semi-supervised approach that combine both the labeled and unlabeled
corpora for decoding and learning. The obvious way is to use the supervised MLE to find an
initial guess of λ, then run the Baum-Welch algorithm on D to re-estimate λ. The potential
strength of this approach is that it has access to more data than the above two approaches.
However, the knowledge from L and D can be different in quality and quantity, and which
corpus to trust more remains a question (phase II asks you to explore this question).

Phase II A new parameter µ ∈ [0, 1] (Mu) is added to balance the estimations on D and
L:

A = µAL + (1− µ)AD, B = µBL + (1− µ)BD, π = µπL + (1− µ)πD (2)

When µ = 1, the parameters are estimated using L only (equivalent to Eq. (1)); when µ = 0, L
is totally abandoned (unsupervised HMM). You can set µ to be between 0 and 1 and use these
equations to replace those in Eq. (1) and in the unsupervised HMM.

1

1.3 Numerical issues

During the Viterbi algorithm, we are taking products of many probabilities, leading to infinites-
imal numbers that underflows and our computers do not have sufficient precision to represent
the numbers. Note that only the relative quantities of vt(j) matter when maximizing and we
can work in the log scale:

log vt(j) = max
i

[log vt−1(i) + log aij + log bjot] (3)

The maximizing index i∗ will be the same whether log is taken or not so that the backtracking
pointers are not affected. The reconstructed prediction

#»

Q∗ will be the same.
During the forward algorithm, the same issue arises but is addressed in a different way. For

each location t,

α̃t(j) =

{∑
i α̂t−1(i)aijbjot if t > 1

πjbjot if t = 1

ct =
1∑

j α̃t(j)
(normalizing factor)

α̂t(j) = ct × α̃t(j) (normalization)

(4)

Then α̂ is normalized to a good range and
∑

j α̂t(j) = 1.

1.4 Working with corpora

Our textbook only shows you how to run the above algorithms on a single sentence, while we
are dealing with corpora of multiple sentences. This difference will affect the EM algorithm:
simply storing all ξt(i, j) and ξt(i) and other variables for each sentence is not scalable. Instead,
you will need to design online algorithm that only take memory linear in the sentence length
but not the corpus size. You can estimate the ξ’s for the sentence

#»

Od, update the sums in the
nominator and denominator in

âij =

∑d
k=1

∑T−1
t=1 ξ

k
t (i, j)∑d

k=1

∑T−1
t=1

∑
j ξ

k
t (i, j)

, (5)

and go to the next sentence. At end, the sums are accumulated over all position of the whole
corpus (imagine that the corpus as a very long sentence that is the concatenation of invididual
sentences in the corpus).

âij =

∑D
d=1

∑T−1
t=1 ξ

d
t (i, j)∑D

d=1

∑T−1
t=1

∑
j ξ

d
t (i, j)

, (6)

B and π can be done in a similar way.

2 Exercises

Answer the following questions in your report:

• Prove that α̂t(j) =
∏t

s=1 csαt(j) and
∑

j αT (j) = 1∏T
s=1 cs

(hint: use proof of induction).

• Assume βT (j) = cT for all j, then prove that β̂t(j) =
∏T

s=t csβt(j).

2

• Prove that ξt(i, j) = α̂t(i)β̂t+1(j)aijbjot+1 . In other words, you can use α̂ and β̂ to find ξ

directly without calculating α, β and P (
#»

O|λ) (!).

• Prove that the A,B, π matrices produced by Eq. (2) define appropriate probability distri-
butions.

3 Experiments

3.1 Data exploration

In phase I, download the small POS-tagged training and test corpora from https://www.clips.

uantwerpen.be/conll2000/chunking/. Refer to the website regarding the data format. In
phase II, larger corpora will be released to test the scalability of your programs. For both cases,
report the number of POS-tags, tokens (unigrams), sentences, maximal length of sentences.

3.2 System design and implementations

Figure 1: Overall system design. p1 in the folder names indicate that the files are for phase I.
For phase II, you will need to change them to p2.

Figure 1 shows the design. Similar to project 1, boxes indicate java classes, arrows indicate
flow of data, with names of data over arrows being the input/output (Italic names are files on
disk, while normal names are Java objects within your program). See the attached bash script
and the functions/APIs to understand the flow. You may create other helper files, but I will
enforce the formats of those files shown in Figure 1.

The list of Java classes in the project:

• FileHandler.java It is provided to you to read and write tagged and untagged sentences.
data/p1/train.txt, data/p1/test.txt and results/p1/test predictions.txt will be handled by
this class. Note that the prediction files are not that different from the train.txt and
test.txt files: the only two differences are: 1) the POS tags in the predictions files are
generated by your HMM model instead of given, and 2) there are only two columns
(unigram tokens and POS tags) in the prediction files. This class will be the same for
phases I and II except that files will be under different folders (p1 vs. p2).

• HMM.java

Phase I : implement the forward, backward and the EM (Baum-Welch) algorithms. Use
FileHandler to read D and L. Initialize λ = {A,B, π} using MLE on L. Then run the EM
on D to re-estimate λ using the forward-backward algorithm. Matrix class Jama is rec-
ommended to represent all matrices and improve the readability of your codes. Numerical

3

issues need to be taken care of as indicated in the problem statement. Produce and output
predictions of POS tags for sentences in D to results/p1/predictions.txt, and log likelihoods
(
∑D

d=1 log p(
#»

Od|λ(t))) after each iteration t of the EM algorithm) to results/p1/log.txt,

Phase II There are two tasks. 1) Set µ to values in {0, 0.1, 0.2, . . . , 1} to allow different
balances between D and L. Predict the POS-tags for the unlabeled data data/p1/test.txt
and track the log-likelihoods P (D|λ) during all 30 EM iterations. Use the Evaluator
class to report prediction accuracies of different models. 2) Download the file unla-
beled 20news.txt.zip from Piazza. and concatenate the unzipped file to data/p1/test.txt to
generate a larger unlabeled corpus. Re-run task 1). Note that the log-likelihood shall be
computed on D =data/p1/test.txt but not the concatenated corpus.

• Evaluator.java This class calculates performance metrics using your predictions (written
to a file) and ground truth POS tags (provided in the data/p1/test.txt file). This class
will be provided to you.

• Word.java This class encapsulates word information including the token, POS tag (in a
particular position, if any) and other features of a word. Public methods provide ways to
access and modify word information.

• Sentence.java The class represents a single sentence, which is a list of Word objects.
Note that a corpus can be represented by an array of Sentence objects. Public methods
provide ways to access and modify a sentence.

Bash script files (build java.sh and run java.sh) are provided to compile and run the pro-
grams. The necessary third party packages are in the folder “jars” in the zipped file (jama.jar
in this project).

4 Deliverables

Download the provided zip file and put down your codes in the empty functions. Add README.txt
and report p2.pdf to the root folder (one level above src). Then zip the whole folder to <your
Lehigh id> p2.zip and upload it to coursesite. Don’t submit the project from your IDE.

The README.txt describes what works and what does not, any improvements you think
that should earn you extra credits. The report p2.pdf file contains the answers to the exercise
questions, plots of log-likelihoods during EM for Phase I and Phase II (there should be 22 such
curves: 11 curves using p1/data/test.txt only and the other 11 using the concatenated unlabeled
corpus). An example figure using µ = 0.7, 0.8, 0.9 with unlabeled corpus p1/data/test.txt is given
in Figure 2. Also include a figure to report the accuracies of the semi-supervised HMM with
different µ values (see Figure 3. Notice that as µ goes up (using less D), the accuracy gets
better. Do you observe the same trend when concatenate the small test corpus with the large
unlabeled corpus?

Important: Before you submit your project, compile and run it (using the provided bash
scripts) on a Sunlab machine where your projects will be graded.

Important: remember to click ”Submit” botton to deliver your submission, otherwise the
project will be regarded as NOT submitted.

5 Grading

When grading your project, I will run the bash scripts to compile and run your codes on a
Sunlab machine. HMM decoding accuracy, running time and memory consumption will be

4

Figure 2: x-axis is the number of iterations and the y-axis is the log likelihoods P (D|λ).

Figure 3: x-axis is different mu values and the y-axis is the POS-tagging accuracies.

used to rank your project against others’ and determine one third of your total grade (15 pts)
of this project.

Important: you can submit a milestone before the phase I due date to earn an extra credit
of 2 points on top of the 15 points of the entire project. The milestone submission format is the
same as the final submission in phase II but without the report and README.txt. It shall at
least contain an HMM model that can be trained and output predictions. I will just check if it
works and don’t care how accurate it is at that time. You can keep improving it before phase
II due date.

5

