
Natural Language Processing - Project 1
CSE 398/498-013
Prof. Sihong Xie
Due Date: 11:59pm, Sep 21, 2017

1 Problem Statement

Given a training corpus, you will estimate bigram language models with proper smoothings and
use the models to find mis-spellings in a test corpus.

1.1 Bigram Language Models

Recall that a bigram model is a bunch of conditional probabilities p(w|v), where w, v ∈ V and
V is a given vocabulary. The simpliest method to estimate these probabilities (or to learn the
language model) is to compute the frequencies of tokens (w, v) and v, and take their ratio:

P (w|v) =
C(w, v)

C(v)
. (1)

We have learned that there are issues in this estimation, such as zero counts.

1.2 Smoothing

Smoothing is a set of techniques to handle the zero counts. The idea is to shave some probability
mass off the seen tokens for those that do not appear. For example, Laplacian smoothing adds
one to each count, and we got

PL(w, v) =
C(w, v) + 1

N + |V |
, (2)

where N is the total number of all tokens (two consecutive words (w, v) in this case) in the
corpus. The estimated frequencies of the token (w, v) is:

C∗(w, v) = PL(w, v)×N. (3)

However, this smoothing gives too much probability mass to the unseen ones if the number of
unseen tokens is too large. A better technique called Good-Turing smoothing uses the following
estimation:

C∗ = (C + 1)× NC+1

NC
, if C < k, (4)

where NC is the frequency of tokens with the frequency C (frequencies of frequencies, or ff for
short). If C ≥ k, then no smoothing is applied and C is retained.

Note that NC is a function of C1 and roughly follows the following relationship:

logNC = a + b logC (5)

Figure 1 shows an example plot of the two quantities with a linear regression model2.

1We ignore the token (w, v) to avoid clutter.
2If you don’t know what this is, Google it. We use the Apache SimpleRegression class to find the relationship

between logNC and logC.

1

Figure 1: Plot of frequencies of frequencies in the log scale, with a line fitted to the points.

1.3 Spell checking using bigrams

For a pair of confusing words, say, advice vs. advise, if we are not sure about which word is the
correct one under some context, we can compared the bigram proabilities p(advice|previous word)
and p(advice|previous word). If a word appeared in the text has lower bigram probability than
its alternative, then we regard the word appeared an error and should be replaced by the
alternative.

2 Questions

Answer the following two questions in your report

• Show that it makes sense to set C∗(w, v) = N0
N for those unseen tokens ((w, v) with

C(w, v) = 0).

• Calculate the probability mass reserved for the unseen tokens when GT smoothing is used,
and compare the mass to the mass reserved when Laplacian smoothing is used.

3 Experiments

In the experiment, training and test corpus will be given to you. Training data is obtained from
reviews of a product, and we assume that there is not mis-spelling. The test data is polluted
by changing every word that is in our confusing word list (also given to you) to its alternative.

3.1 Data Exploration

• Find N0, the number of zero frequency tokens (w, v).

• Find the probability mass reserved for the zero frequency tokens (w, v) in Laplacian and
GT smoothings.

2

Figure 2: Over project design

• Use the training data to find NC for each C. Take the logorithm of both quantities and
plot a figure like Figure 1 (Matlab codes provided if you want to use Matlab for plotting
and line fitting). Add the figure in your report.

3.2 Spell checking

Train two bigram models using Laplacian and GT smoothing, respectively. Find the locations
of the errors in the test data using two models, and report their precisions, recalls and F1 scores.

precision =
#correctly detected errors

#all detected errors
, (6)

recall =
#correctly detected errors

#all actual errors
(7)

f1 =
precision× recall

precision + recall
(8)

3.3 Code Design

The overall design of the project is shown in Figure 2. Data flow over the arrows into and
out of individual classes/programs (given in boxes). Tokenizer takes data/train reviews.txt
as input and outputs data/train tokens.txt, which is fed to ProbEstimator to produce three
files (shown in the figure) in the results folder. Predictor takes the previous three files, plus
data/test tokens fake.txt, to predict the locations where there is an error, stored in the re-
sults/file test predictions.txt. Lastly, Evaluator takes the results/test predictions.txt and
data/test ground truth.txt to calculate performance. See the attached bash script to under-
stand the flow.

You’re going to program two classes, the ProbEstimator and Predictor, in Java, and the Tok-
enizer.java and Evaluator.java are given to you. Bash script files (build java.sh and run java.sh)
are provided to compile and run the programs. The necessary third party packages are in the
folder “jars” in the zipped file. The file data/all confusingWords.txt gives you pairs of words
that are confusing. Your predictor decides, for each token that is in data/test tokens fake.txt
and in any confusing pair, which word in that pair should be the correct one to use. If a
wrong word is used, output the error location to results/test predictions.txt. When grading
your project, I will run the bash scripts to compile and run your codes on a Sunlab machine.

3

3.4 Data formats

Refer to the corresponding files in the zipped file to learn the formats of data/train reviews.txt
and data/test tokens fake.txt. Each line of the results/test predictions.txt file looks like

5481:114,

5608:8,

5620:66,73,

indicating that the 5481-th sentence has an error in token location 114, and the 5620-th sentence
has two errors in token locations 66 and 73. All sentence numbers and token locations are 0-
based. The ground truth error locations are formatted similarly, although the file is not given
to you. You can design the formats of the other files.

4 Deliverables

Download the provided zip file, add your ProbEstimator.java and Predictor.java files to the src
folder. Also add README.txt and report p1.pdf to the root folder (one level above src). The
zip the whole folder to <your Lehigh id> p1.zip and upload it to coursesite.

The README.txt describes what works and what does not, any improvements you think
that should earn you extra credits. The report p1.pdf file contains the answers to questions in
Section 2 and 3.1. Before you submit your project, compile and run it on a Sunlab machine
where your projects will be graded.

5 Grading metrics

How good your GT estimators are, how fast it runs and how much memory it takes will be used
to rank your project against others’ and determine one third of your total grade of this project.

4

