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Scope of Explanations for GNN: LEHIGH

Node-level / Edge-level: GNNExplainer[1], PGExplainer[2] (explain a target node) V2 .
Highlight important edges or nodes. 4 V7
Cons: not guarantee to be connected, ignore interactions within graphs. y
| R vo 7 6
Model-level: XGNN[3] (explain a target model) etian *0s
Extract the most important patterns for model’s prediction w.r.t. a specific class c;
G* = argmgxP(f(G) =¢;) Grphs

Cons: not input-dependent, less precise

Subgraph-level: SubgraphX (explain a target node or graph)
Extract a subgraph for target graph’s prediction
G* =arg max Score(f,G,G;)

|Gi|5Nmin

[1] Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural networks." NeurlPS, 2019. 5
[2] Luo, Dongsheng, et al. "Parameterized explainer for graph neural network." NeurlPS, 2020.
[3] Yuan, Hao, et al. "Xgnn: Towards model-level explanations of graph neural networks." SIGKDD 2020.
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Notations

We consider a graph classification model f(-), such that y is the predicted class for input graph G.
We want to explain the outcome y by extracting a connected subgraph.
G* =arg max Score(f,G,G;)

|Gi|5Nmin
|G;| < N, is a connected subgraph with no more than N,,,;,, number of nodes;
Score(-,,) is a scoring function evaluating the importance of G; given f and G.

Solve by searching.
1. Brute-force is intractable and thus employ Monte Carlo Tree Search (MCTS).
2. Use Shapley value as scoring function.
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Exploring subgraph by MCTS

v2 v3
Build a search tree: w v
Root is the input graph; v

Each node N; is a connected graph; v

Each edge is a node-pruning action a: A
[Remove a node, all connected edges are removed. v v
v5
If there are multiple disconnected subgraphs, X AR
retain the largest one.]
v2 v3
N; = G;
Pair (N;, a;): G; is obtained by pruning a; from N;. v v
v5
: : : After multiple actiogs ...
If we search all possible leaf nodes, time complexity utip !
is exponential (combination problem); 2 3

MCTS provides the clues about which actions to take.
Leaf: connected graph with

no more than N,,;,, nodes. 4
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v4 -

After building the search tree, in MCTS: v
Root Ny = G b

For each pair (N;, a;), we record four variables: ve

C(N;, a;): the number of counts selecting a; from N;.
W(N;, a;): the total reward for all (N;, ;).

Q(N;, a;) = W(N;, a;)/C(N;, a;): the average reward for (N;, a;).

R(N;, a;) = Score(f, G, G;): immediate reward measuring the
importance of G;.

The criteria for action selection is:
a® = arg max Q(NL-, aj) + U(Ni,aj)
aj

V2K C(N;, ay)
1+C(N;, )

Then update four variables in the path.

U(Nl, a]) = /‘[R(NL, a])

Leaf: connected graph with
no more than N,,;, nodes. 5
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The score function — Shapley Value

Score(:,,") is used in explanation quality evaluation and the MCTS rewards.

If we use the predicted scores from the trained GNN f for subgraph G;, “it cannot capture the
interactions between different graph structures, thus affecting the explanation results.”

We use Shapley values: the GNN predication is the game gain, and graph structures are players.
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The score function — Shapley Value

To study SV of a subgraph G; with V = {v,, ..., v} from a graph ¢ with V = {v,, ..., v;, ..., v, }.
The set of players P = {G;, V411, ---, V;p}, @and SV of the player G; is:
ISt (P — [S]—1)!

$(G;) = IPIl

SCSP\{G;}
m(S,G;) = f(SU{G;}) — f(S)

S is the possible coalition set of players, m is the marginalized contribution.

m(S, Gl)

Time consuming! It enumerates all possible coalitions.
-> Only consider L-hop neighborhood of G; (GNN f contains L layers)
Replace P by P' = {G;, V444, ... v-} (Within L-hop neighborhood)
-> Monte-Carlo sampling
Sample T coalition sets S;, and the averaged contribution score is regarded as the approximation:

T
1
d(Gy) = TZ m(S;, G;) 7
t=1
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Overview of SubgarphX

Upper row: compute SV by MC sampling; lower row: explore subgraph in a search tree.




LEHIGH

UNIVERSITY

Experiments

Datasets: [molecular: MUTAG, BBBP] [Sentiment: Graph-SST2] [synthetic: BA-2Motifs, BA-shape]
Target model: GCNs, GATs, GINs.

Baselines: GNNExplainer, PGExplanier, MCTS_GNN
MCTS_GNN uses MCTS to explore subgraphs but employs the GNN predictions of these subgraphs as the scoring function.

Qualitative experiments (no group truth)
Quantitative metrics: Fidelity, sparsity and efficiency.

Fidelity: it removes the important structure from the input graphs, and computes the difference
between predictions.

Sparsity: the fraction of structures being identified as important.

Efficiency: running time.
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Experiments

Qualitative experiments:
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Figure 3. Explanation results on the BA-2Motifs dataset with a Figure 4. Explanation results on the MUTAG dataset with a GIN
GCN graph classifier. The first row shows explanations for a graph classifier. We show the explanations for two correct predic-
correct prediction and the second row reports the results for an tions. Here Carbon, Oxygen, and Nitrogen are shown in yellow,
incorrect prediction. red, and blue, respectively.
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Experiments

Quantitative experiments: (Fidelity and Sparsity)
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Experiments

Quantitative experiments: (Efficiency) [For 50 graphs with an average of ~25 nodes in BBBP]
Table 2. Efficiency studies of different methods.

Method MCTS* MCTS' SubgraphX GNNEXxplainer PGExplainer

TIME >10 hours 865.4+1.6s 77.8+ 3.8s 16.2 4+ 0.2s 0.02s (Training 362s)
FIDELITY N/A 0.53 0.55 0.19 0.18

IS|!(|P|—|S|-1)!

P! m(S, Gl)

MCTS’ doesn’t use Monte Carlo sampling: ¢(G;) = Xscpnicy

MCTS* uses MC sampling but doesn’t use approximation P’.
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4 v7
Pruning strategy: v !
1. Low2High: [N W
Arranges the nodes based on node degrees from low to high. o 3
Only consider to prune top-k lowest degree nodes. a: prune v7 "

2. High2Low is similar, but prunes top-k highest degree nodes.

High2Low should be more efficient but may ignore optimal solutions.

Method Time  Fidelity

LOW2HIGH 107.24s 0.66149
HiGH2LoOwW 21.52s 0.61046
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