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Notations

1.0
A sample x € X € R* and label y € {+1, -1},
|x| is the norm, e.g., |x|, |x],. 05
B(x,e) = {x' € X: |x' — x| < €} is the neighborhood of x.

0.0
f: X - R, a score function, maps an instance to a confidence value (being positive). 0.0 0.5 1.0

sign(f(-)) is the associated binary classifier, where sign(-) is the sign of input, and sign(0) = 1.
DB(f) = {x € X: f(x) = 0} is the decision boundary of f.
B(DB(f),e) = {x € X: 3x' € B(x,¢) s.t. f(x)f(x") < 0} is the neighborhood of decision boundary.

classifier

For a given function y(w), ¥*(v) := sup{u’v — y(u)} is the conjugate function of 1.
u

Y** is the bi-conjugate, and y ! is the inverse function.

1{event} is the indicator function indicating if event happens.
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Notations

B(x,e) = {x' € X: |x' — x| < €} is the neighborhood of x.
B(DB(f),e) = {x € X: 3x' € B(x,¢) s.t. f(x)f(x") < 0} is the neighborhood of decision boundary.
1.0
Assume that the data are drawn from an unknown distribution (X,Y) ~ D
The robust (classification) error under € perturbation:
Riob(f) = Exy)~p1{3X' € B(X,€) s.t. f(X")Y < 0}

The natural (classification) error:

0.5

:Rnat(f) = E(X,Y)~D1{f(x)y < 0} 0.0
Clearly, R.o1,(f) = R (f) for all £, and the equality holds when € = 0.

Red area of

The boundary error:

Rpay () = Exy)~p1{X € B(DB(f), €), f(X)Y > 0}
And R;op (f) = :Rnat(f) + Rbdy(f)
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Toy example

The trade-off between natural and robust errors: training robust models may lead to a reduction of
standard accuracy.

0, x € [2ke, 2k + 1)e),

1, x € ((2k + De, 2k + 1)e]. Were x ~ U1l

Assume that n(x) :==Pr(Y = 1|X =x) =

Bayes optimal classifier: sign(2n(x) — 1)
All-one classifier: 1 (always outputs “positive”)

n(x)
1 Bayes Optimal Classifier | All-One Classifier
R 0 (optimal) 172
2 Ry 1 0
Rrob 1 1/2 (optimal)
S I S S
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0, x € [2ke, (2k + 1)e),
Assume thatn(x) =Pr(Y = 1|X =x) =

The Bayes optimal classifier: sign(2n(x) — 1)

The all-one classifier: 1 (always outputs “positive”)

® For the natural error: Ry, (f) = Exy)~p1{f (X)Y < 0}:

1, x € ((2k + e, 2k + 1e].

It is obvious that R,,:(f) = 0 for Bayes classifier, and R,:(f) = 1/2 for all-one classifier.

® For the boundary error Rpay(f) = Exyy~pH{X € B(DB(f), €), f(X)Y > 0}:

For Bayes classifier, we can always find a perturbation resulting in the right prediction, since the interval is €.

For all-one classifier, DB(f) (if any) is not within [0,1], and thus the event never happens.
® For the robust error Ryop (f) = Exy)~p1{3X’ € B(X,€) s.t. f(X")Y < 0}:
For Bayes classifier, we can always find a perturbation to flip the prediction, since the interval is €.

For all-one classifier, since f(X) = 1, VX, we have 1/2 change to obtain negative sample (Y = —1).

Or we can compute it by Ryop(f) = Rpac(f) + Rpay (f)-

In most of existing works, we can assign different weights on both errors (R,,¢ + Rpqy) to balance them.

Bayes Optimal Classifier | All-One Classifier
Ruat 0 (optimal) 12
Roay 1 0
Rrob 1 1/2 (optimal)
neof
1
1/21
[ e S
5

In this paper, the authors try to devise tight differentiable upper bounds on both terms, as both involve 0-1 loss functions.
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0-1 loss function is intractable -> tractable surrogate loss Ry (f) = Exy)~p@(f (X)Y).

Define conditional ¢-risk:
Forn € [0,1], H(n) == inf Cy(a) = ;gug(n¢(a) + (1 -me(-),
and define H™() = inf  Cy(@) = inf  (nd(@)+ (1 -mp(-a).

Assumption on ¢: it is classification-calibrated: if H=(n) > H(n) forany n # 1/2.

Intuition:
n(x) :=Pr(Y = 1|X = x) and « is the probability of positive class predicted by f.
H(m) = rnfin Rnat(f),

H (n) = nr}ianat(f), s.t. f is inconsistent with Bayes optimal classifier
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Classification-calibrated surrogate loss

The functional transform of classification-calibrated loss ¢:

Define Y)(8) = H™ (1%9) -H (#) and ¥:[0,1] - [0,0) by ¥ = 1p**. (1p* is the conjugate function of ).

Y (0) is the largest convex lower bound on ¥/(0) = H™ (#) —H (%9)

P (0) characterizes how close the surrogate loss ¢ is to the class of non-classification-calibrated losses.

Property of classification-calibrated loss:
For classification-calibrated surrogate loss ¢, 1 is non-decreasing, continuous, convex on [0,1] and ¥(0) = 0.
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Surrogate loss and 0-1 loss

Upper bound:

Let Ry (f) == E¢(f(X)Y) and pr (f), for non-negative classification-calibrated loss ¢ with ¢(0) > 1, any measurable
f: X — R, any probability distribution on X' x{+1}, and any 1 > 0, we have:

Rrob(f) = Riat < Y7 (Ry () = Ry) + PriX € BDB(f), ), f(X)Y > 0]
<Y (Ry(N) ~Ry) +E  max  o(F (XD (X)/2)

The models are vulnerable to small adversarial attacks because the probability that data lie around the decision
boundary of the model is large.



LEHIGH

UNIVERSITY

Surrogate loss and 0-1 loss

Let Ry (f) = Ep(f (X)Y) and Ry (f), for non-negative classification-calibrated loss ¢ with ¢(0) > 1, any measurable
f: X — R, any probability distribution on X’ x{+1}, and any 4 > 0, we have:

Rrob(f) = Rpat < Y71 (Re () — Ry) + Pr[X € B(DB(f), e), f(X)Y > 0]
<SP HRp(f) = Ry) +E_max ¢(f(X)f(X)/2)

X'eB(X€)
Proof:
The first inequality holds since ¢ is a classification-calibrated loss!"! and R4, = Pr[X € B(DB(f), €), f(X)Y > 0]:
Rrob(f) = Rpae(f) + Rpay (f)
Rrob(f) = Rhat = Rnat(f) = Riat + Roay(f) < YRy (f) = Ry) + Ripay ()
Now we consider the second inequality:
Pr[X € B(DB(f),¢), f(X)Y > 0] < Pr[X € B(DB(f), ¢)]

= Ex'grlaa"g((,e) H{fX) # f(X)}

=E " H{f&XHf(X)/1 < 0}

<E_max ¢(f(X)f(X)/1)

X' €B(X,€)

[1] Bartlett, Peter L., Michael I. Jordan, and Jon D. McAuliffe. "Convexity, classification, and risk bounds." Journal of the American Statistical Association 2006. 9
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Surrogate loss and 0-1 loss

Lower bound:

Suppose that |X'| > 2. For non-negative classification-calibrated loss ¢ with ¢(x) —» 0 as x - +o0, and any ¢ > 0, any
6 € [0,1]. There exists a probability distribution on X x{+1}, a function f: R? — R and a regularization 1 > 0 such that
Rrob(f) — Rpar = 6 and:

1 (9 —E  max )¢(f(X’)f(X)/)l)) SRy(f)—Ry <9 (9 —E  max ¢(f(X’)f(X)//1)) +¢

X'eB(X,e X'eB(X,e)

Under the extra conditions on loss functions xliI_II_l ¢(x) = 0, the upper bound is tight.

The first inequality holds since Y is non-decreasing, continuous, convex on [0,1] and

Rrob(f) = Rhat S W H(Rp(f) = Ry) +E_ max  ¢(f(X)f(X)/2)

X'€B(X,€)

10



Adversarial training by TRADES HEHK;'HY

Based on previous theorems, we consider a new surrogate loss:
min E {qb(f (X)Y) + LN d(fFXOf X )//1)}

The first term, ¢ (f(X)Y), minimizes the natural error.

The second regularization term, X,g?Ba&e) d(f(X)f(X")/A), minimizes the difference between the predictions of natural
example and the adversarial example. Thus, it stands for the “robustness”.

A can balance the importance of natural and robust errors.

(It tends to be Bayes optimal classifier when 4 — 400 and all-one classifier when 1 - 0.)

We can easily extend it to multi-class tasks by replacing ¢ with a multi-class calibrated loss L(:,-):
min B {L(F00, V) + | max  L(£(0,1(X))/2]

In most of existing works:

min E{ max U XN}
is served as the upper bound of R.,,(f). However, it may not be the tight upper bound and may not capture the
trade-off between natural and robust errors.

13
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Adversarial training by TRADES LEHIGH

Line 5: x; is global minimizer to g(x') = L(f(xi),f(x’)), Algorithm 1 Adversarial training by TRADES
input Step sizes 77 and 72, batch size m, number of iter-
thus, initialize x; by adding small perturbation. ations K in inner optimization, network architecture
parametrized by 6
output Robust network fy
1: Randomly initialize network fy, or initialize network
with pre-trained configuration
2: repeat
3:  Read mini-batch B = {1, ..., Z,, } from training set
4. for:=1,...,m (in parallel) do
5 x, < x; + 0.001 - N'(0,I), where N'(0,I) is the

Line 7: solve X,gé%g((’e)ﬁ(f(x),f(x’))//l

by projected gradient descent.

Line 10: gradient descent for the objective function

min E { L(f(X),Y) + max L( (X)), f( X’)) / ,1} Gaussian distribution with zero mean and identity
s X'eB(X.€) variance
6: fork=1,..., K do
7 w; <~ H]B(a:l,e)(nlSIQn(vm;'C(fO(mz)a fO(m;)))4
), where II is the projection operator
8: end for
9: end for

10: 6 — 0 — md iy Voll(fo(x:),y:) +
L(fo(x:), fo(x;))/A]/m

11: until training converged

14
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Experiments

Verify the tightness of upper bound.
Argis = Rrob(f) = Rpae < Y (R () — Ry) + Ex,gé%§e)¢(f(xl)f(x)//1) = Arus
Train a classifier with natural training method to estimate R;,,; = 0% and Ry = 0.0

Find the classifier f by mfin E {cp(f(X)Y) + x'glﬁa%§,e) d(fX)f(X )/A)} and approximate Ry, and R.
Estimate [EX’gIlBB%;((,e) d(f(X)Hf(X)/A) by FGSM.

(The expectation is estimated in the test set.)

X | Aon(f) %) Rye(f) A= Arus — Arns

2.0 99.43 0.0006728 0.006708
3.0 99.41 0.0004067 0.005914
4.0 99.37 0.0003746 0.006757

5.0 99.34 0.0003430 0.005860
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Robust accuracy Aob(f) = 1 = Rrob(f), and Apat(f) = 1 — Rpac(f)

Sensitivity of 4
1/X | Arob(f) (%) on MNIST Aot (f) (%) on MNIST || A,ob(f) (%) on CIFAR10  Ap.:(f) (%) on CIFAR10
1.0 94.75 + 0.0712 99.28 +0.0125 44.68 + 0.3088 87.01 £+ 0.2819
2.0 95.45 4+ 0.0883 99.29 £+ 0.0262 48.22 £+ 0.0740 85.22 4+ 0.0543
3.0 95.57 £ 0.0262 99.24 + 0.0216 49.67 £0.3179 83.82 4+ 0.4050
4.0 95.65 4+ 0.0340 99.16 £ 0.0205 50.25 +0.1883 82.90 + 0.2217
5.0 95.65 + 0.1851 99.16 £ 0.0403 50.64 +0.3336 81.72 + 0.0286

16
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Defense | Defense type | Under which attack | Dataset | Distance | Anat(f) | Arob(f)

Buckman et al. (2018) gradient mask | Athalye et al. (2018) | CIFAR10 | 0.031 ({o0) - 0%

Ma et al. (2018) gradient mask | Athalye et al. (2018) | CIFAR10 | 0.031 (o) - 5%

Dhillon et al. (2018) gradient mask | Athalye et al. (2018) | CIFAR10 | 0.031 (o) - 0%

Song et al. (2018) gradient mask | Athalye et al. (2018) | CIFAR10 | 0.031 (o) - 9%

; ’ Na et al. (2017) gradient mask | Athalye et al. (2018) | CIFAR10 | 0.015 (4) - 15%
min E { X! g%%;gf) P(f (X )Y)} Wong et al. (2018) robust opt. FGSM2° (PGD) | CIFARIO | 0.031 (£oo) | 27.07% | 23.54%
Madry et al. (2018) robust opt. FGSM?’ (PGD) CIFARI10 | 0.031 ({s.,) | 87.30% | 47.04%
Zheng et al. (2016) regularization FGSM*Y (PGD) CIFARIO | 0.031 ({) | 94.64% | 0.15%
Kurakin et al. (2017) regularization FGSM?° (PGD) CIFAR10 | 0.031 ({so) | 85.25% | 45.89%

Ross & Doshi-Velez (2017) || regularization FGSM?° (PGD) CIFAR10 | 0.031 (/o) | 95.34% 0%
TRADES (1/A = 1.0) regularization FGSM?° (PGD) CIFAR10 | 0.031 (/o) | 88.64% | 49.14%
TRADES (1/)\ = 6.0) regularization FGSM?*° (PGD) CIFAR10 | 0.031 (¢..) | 84.92% | 56.61%
TRADES (1/A = 1.0) regularization DeepFool (Ys) CIFARI10 | 0.031 (¢,) | 88.64% | 59.10%
TRADES (1/X = 6.0) regularization DeepFool (Ys) CIFARI10 | 0.031 ({,) | 84.92% | 61.38%
TRADES (1/XA = 1.0) regularization LBFGSAttack CIFARI10 | 0.031 (/s,) | 88.64% | 84.41%
TRADES (1/) = 6.0) regularization LBFGSAttack CIFARI10 | 0.031 ({s,) | 84.92% | 81.58%
TRADES (1/XA = 1.0) regularization MI-FGSM CIFARI10 | 0.031 (¢,) | 88.64% | 51.26%
TRADES (1/X = 6.0) regularization MI-FGSM CIFARI1O0 | 0.031 ({s,) | 84.92% | 57.95%
TRADES (1/\ = 1.0) regularization C&W CIFARI10 | 0.031 (¢,) | 88.64% | 84.03%
TRADES (1/\ = 6.0) regularization C&W CIFARI10 | 0.031 ({s,) | 84.92% | 81.24%

Samangouei et al. (2018) || gradient mask | Athalye et al. (2018) | MNIST 0.005 (45) - 55%
Madry et al. (2018) robust opt. FGSM*° (PGD) MNIST 0.3 (Uso) 99.36% | 96.01%
TRADES (1/) = 6.0) regularization FGSM*° (PGD) MNIST | 0.3 () | 99.48% | 96.07%
TRADES (1/) = 6.0) regularization C&W MNIST 0.005 (£2) | 99.48% | 99.46%
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