On the (In)fidelity and Sensitivity of Explanations

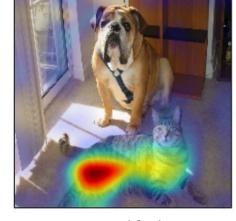
Chao Chen @CSE Dept

Preliminaries – Notation in explanations

Given an input $x \in \mathbb{R}^d$ with corresponding output $y \in \mathbb{R}$, and a target model $f \in \mathcal{F}$: $\mathbb{R}^d \to \mathbb{R}$. The explanation model $g: \mathcal{F} \times \mathbb{R}^d \to \mathbb{R}^d$ provides importance scores g(f,x) for each input features.

f(x): VGG-16

f(x): cat



g(f,x)

Preliminaries – SimpleGrad

[In the preliminary, we use the superscript *e* to denote a specific sample to explain.]

One choice for the explanation model is the partial derivative of f(x) with respect to x:

$$g^{sim}(f, x^e) \coloneqq \frac{\partial f(x)}{\partial x}\Big|_{x=x^e}$$

Sometimes, explanations take the form of element-wise product of inputs and the gradients:

$$g^{inp}(f, x^e) \coloneqq x^e \left. \frac{\partial f(x)}{\partial x} \right|_{x=x^e}$$

Preliminaries – SmoothGrad^[1]

SmoothGrad (SG) alleviate the impacts of noise:

1) Take random samples around the input x^e

$$x^e + \epsilon_k$$
, $\epsilon_k \sim \mathcal{N}(0, \sigma^2)$

2) take the average of the resulting heatmaps.

$$g^{SG}(f, x^e) = \frac{1}{K} \sum_{k=1}^K g^{sim}(f, x^e + \epsilon_k)$$
$$g^{sim}(f, x^e) \coloneqq \frac{\partial f(x)}{\partial x} \Big|_{x=x^e}$$
$$g^{SG}(f, x^e) = \left[\int_Z k(x^e, z) dz \right]^{-1} \int_Z g(f, z) k(x^e, z) dz$$

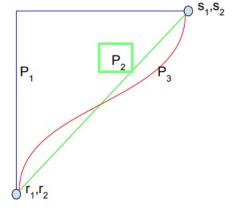
Preliminaries – IntegratedGrad^[2]

Integrate the gradient along the path from the baseline to the input.

$$g^{IG}(f, x^e) := (x^e - x_0) \times \int_{t=0}^{1} g^{sim}(f, x_0 + t(x^e - x_0)) dt$$

$$t = 0$$
: $x_0 + t(x^e - x_0) = x_0$

$$t = 1$$
: $x_0 + t(x^e - x_0) = x^e$



Preliminaries – Completeness^[3]

One desiderata of explanation - Completeness

$$\sum_{i=1}^{d} g(f, x)_{i} = f(x) - f(x_{0})$$

Methods satisfying completeness:

IntegratedGrad, LRP, Shapley Values, ...

Methods unsatisfying completeness:

SimpleGrad, SmoothGrad, ...

What does this paper do?

Infidelity

Definition of infidelity

Find the Minimum of the infidelity

Relate to existing works and propose other alternatives for perturbations

Sensitivity

Definition of sensitivity

Relation between sensitivity and infidelity

One desiderata of explanation - Completeness[3]

$$\sum_{i=1}^{d} g(f, x)_{i} = f(x) - f(x_{0})$$

"More rigorously" (sensitivity-n):

$$\sum_{i \in S} g(f, x)_i = f(x) - f(x[x_S = 0])$$

where $x[x_S = a]_j = a\mathbb{I}(j \in S) + x_j\mathbb{I}(j \in S)$

For example:

$$x = [1, 2, 4, 7, 9, 13]; S = \{1,3,4\}; a = 0;$$

 $x[x_S = a] = [0, 2, 0, 0, 9, 13]$

Completeness:

$$\sum_{i \in S} g(f, x)_i = f(x) - f(x[x_S = 0])$$

Discrepancy of completeness:

$$corr\left(\sum_{i\in S_k}g(f,x)_i, \quad f(x)-f(x[x_{S_k}=0])\right)$$

Problems:

- 1. the "default" value is fixed => more general perturbations?
- 2. Corr() is Pearson Correlation Coefficient. It is hard to optimize (intractable).

Discrepancy of completeness in [3]:

$$corr\left(\sum_{i\in S}g(f,x)_i, \quad [f(x)-f(x[x_S=0])]\right)$$

Definition of **Infidelity**:

$$INFD(g,f,x) = \mathbb{E}_{I \sim \mu_I} \left[\left(I^T g(f,x) - \left(f(x) - f(x-I) \right) \right)^2 \right]$$

 $I \in \mathbb{R}^d$ is the perturbation around x.

- 1. replace fixed perturbations with random variable *I*.
- 2. replace correlation with expected mean square error.

The optimal
$$g^* = argmin_g \mathbb{E}_{I \sim \mu_I} \left[\left(I^T g(f, x) - \left(f(x) - f(x - I) \right) \right)^2 \right]$$

If *I* satisfies that $\int II^T d\mu_I$ is invertible:

$$g^*(f,x) = \left(\int II^T d\mu_I\right)^{-1} \left(\int II^T IG(f,x,I) d\mu_I\right)$$

 $IG(f,x,I) = \int_{t=0}^{1} \nabla f(x+(t-1)I)dt$ is Integrated Gradient.

Recall: the SmoothedGard:

$$g^{k}(f,x) = \left[\int_{z} k(x,z) dz \right]^{-1} \int_{z} g(f,z) k(x,z) dz$$

 $g^*(f,x)$ can be considered as applying SmoothGrad on Integrated Gradients, where kernel is not Gaussian kernel but II^T .

Prove: the optimal
$$g^* = argmin_g \mathbb{E}_{I \sim \mu_I} \left[\left| \left| I^T g(f,x) - \left(f(x) - f(x-I) \right) \right| \right|^2 \right]$$

$$= argmin_g \int \left| \left| I^T g(f,x) - \left(f(x) - f(x-I) \right) \right| \right|^2 d\mu_I$$

$$f(x) - f(x-I) = \int_{x-I}^x \nabla_x f(u) du = \int_0^I \nabla_x f(x-I+u) du \stackrel{t=\frac{u}{I}}{\Longrightarrow} I^T \int_0^1 \nabla_x f(x-I+tI) dt$$

$$= argmin_g \int \left| \left| I^T g(f,x) - I^T \int_0^1 \nabla_x f(x-I+tI) dt \right| \right|^2 d\mu_I$$
To set the first order derivative to 0, and denote $IG(f,x,I) = \int_0^1 \nabla_x f(x-I+tI) dt$

$$2 \int II^T \left(g^*(f,x) - IG(f,x,I) \right) d\mu_I = 0$$

$$\int II^T g^*(f,x) d\mu_I = \int II^T IG(f,x,I) d\mu_I$$

 $g^*(f,x) = \left(\int II^T d\mu_I\right)^{-1} \left(\int II^T IG(f,x,I)\right) d\mu_I$

Definition of Infidelity:

$$INFD(g, f, x) = \mathbb{E}_{I \sim \mu_I} \left[\left(I^T g(f, x) - \left(f(x) - f(x - I) \right) \right)^2 \right]$$

Potential choices of *I*:

1. Difference to baseline(s): $(x_0 \text{ can be random variable})$

$$I = x - x_0$$

2. Subset of difference to baseline: for fixed subset $S \subseteq [d]$

$$I_S = x - x[x_S = (x_0)_S]$$

3. Difference to noisy baseline: $(\epsilon \sim \mathcal{N}(0, \sigma^2))$ is a zero mean random vector)

$$I = x - (x_0 + \epsilon)$$

$$INFD(g, f, x) = \mathbb{E}_{I \sim \mu_I} \left[\left(I^T g(f, x) - \left(f(x) - f(x - I) \right) \right)^2 \right]$$

Varying *I* to recover existing works:

1. If $I = x - x_0$ is deterministic:

 $g^*(f,x) \odot I$ satisfies completeness, can be IG, LRP and DeepLIFT.

2. If $I_{\epsilon} = \epsilon \cdot e_i$, where e_i is a coordinate basis vector:

 $\lim_{\epsilon \to 0} g_{\epsilon_i}^*(f, x) = \nabla_x f(x)_i \text{ is the gradient explanation.}$

3. If $I = e_i \odot x$:

 $g^*(f,x)\odot x$ is the occlusion-1 explanation.

[occlusion-1 explanation replaces one feature x_i at the time with a zero baseline and measuring the effect of this perturbation on the target output.]

$$INFD(g, f, x) = \mathbb{E}_{I \sim \mu_I} \left[\left(I^T g(f, x) - \left(f(x) - f(x - I) \right) \right)^2 \right]$$

[Key: set infidelity to 0.]

P2. If $I_{\epsilon_i} = \epsilon e_i$, where e_i is a coordinate basis vector:

$$\epsilon g^*(f,x)_i = f(x) - f(x - \epsilon e_i).$$

As $\epsilon \to 0$: $\lim_{\epsilon \to 0} g_{\epsilon_i}^*(f, x) = \lim_{\epsilon \to 0} \frac{f(x) - f(x - \epsilon e_i)}{\epsilon} = \nabla_x f(x)_i$ is the gradient explanation along the *i*-th coordinate.

P3. If $I = x \odot e_i$:

 $x_i g^*(f, x)_i = f(x) - f(x|x_i = 0)$ is the occlusion-1 explanation.

$$INFD(g,f,x) = \mathbb{E}_{I \sim \mu_I} \left[\left(I^T g(f,x) - \left(f(x) - f(x-I) \right) \right)^2 \right]$$

Varying *I* to recover existing works:

4. If
$$I = h_{\chi}(Z)$$
, where $Z \in \{0,1\}^d$. When $P(Z = z) \propto \frac{d-1}{\binom{d}{||z||_1}||z||_1 \binom{d-||z||_1}{}}$

 $g^*(f,x)\odot x$ is the Shapley value.

$$h_x(Z): \{0,1\}^d \to \mathbb{R}^d$$
 [selects subset], assume $x = [0.5, 20, 7, ..., 13]$

$$z_1 = [1,1,1,...,1],$$
 $h_x(z_1) = x = [0.5, 20, 7, ..., 13]$
 $z_2 = [0,0,0,...,0],$ $h_x(z_2) = 0 = [0,0,0,...,0]$
 $z_3 = [1,0,0,...,1],$ $h_x(z_3) = [0.5,0,0,...,13]$

$$INFD(g,f,x) = \mathbb{E}_{I \sim \mu_I} \left[\left(I^T g(f,x) - \left(f(x) - f(x-I) \right) \right)^2 \right]$$

Varying *I* for new possible explanations. (Used in experiments)

[Noisy Baseline]

Set the baseline to be a Gaussian random vector centered around a certain baseline.

$$I = x - (x_0 + \epsilon)$$

[Square Removal] (image only)

 $I = h_x(Z)$ where the perturbation Z has a uniform distribution over square patches.

$$I = h_x(Z), Z \sim Uniform$$

Sensitivity

(Vector) For the *j*-th coordinate, the sensitivity of explanation is defined by the gradient:

$$[\nabla_x g(f, x)]_j = \lim_{\epsilon \to 0} \frac{g(f, x + \epsilon e_j) - g(f, x)}{\epsilon}$$

(Scalar) Compute the norm of the gradient:

$$SENS_{grad}(g, f, x, r) = \sup_{|\delta| \le r} ||\nabla_x g(f, x + \delta)||$$

Related to local Lipschitz continuity:

$$SENS_{lips}(g, f, x, r) = \sup_{||\delta|| \le r} \frac{||g(f, x) - g(f, x + \delta)||}{||\delta||}$$

[If an explanation has locally uniformly bounded gradients, it is locally Lipshitz continuous as well.]

Sensitivity

In this paper, max-sensitivity is proposed:

$$SENS_{max}(g, f, x, r) = \max_{||\delta|| \le r} ||g(f, x + \delta) - g(f, x)||$$

$$\max_{||\delta|| \le r} ||g(f, x + \delta) - g(f, x)|| \le \sup_{||\delta|| \le r} \frac{||g(f, x) - g(f, x + \delta)||}{||\delta||} \cdot r = SENS_{lips}(g, f, x, r) \cdot r$$

Local Lipschitz continuity can be unbounded when using ReLU, but max-sensitivity is always finite.

[Can be estimated by Monte-Carlo sampling in experiments.]

Sensitivity

The max-sensitivity is defined as:

$$SENS_{max}(g, f, x, r) = \max_{||\delta|| \le r} ||g(f, x + \delta) - g(f, x)||$$

Remarks:

- 1. Sensitivity is only one of desiderata.
- 2. Sensitivity is somehow "nature" of the target models and explanations.

It is nonsense to minimize the max-sensitivity only. We need to consider the fidelity and sensitivity at the same time.

Relation between Sensitivity and Infidelity

The smoothed explanation has less sensitivity and infidelity:

$$g^{k}(f,x) = \int_{z} g(f,z)k(x,z)dz$$

 $g^k(f,x)$ is less sensitive than the original sensitivity:

$$SENS_{max}(g^k, f, x, r) \le \int_z SENS_{max}(g, f, x, r) k(x, z) dz$$

 $g^k(f,x)$ is less infidelity than the original infidelity (when $\frac{c_2}{1-2\sqrt{c_1}} \le 1$):

$$INFD(g^{k}, f, x) \leq \frac{C_{2}}{1 - 2\sqrt{C_{1}}} \int_{Z} INFD(g, f, z)k(k, z)dz$$

$$C_{1} = \max_{x} \frac{\int_{I} \int_{Z} (f(z) - f(z - I) - [f(x) - f(x - I)])^{2}k(x, z)dzd_{\mu_{I}}}{\int_{I} \int_{Z} (I^{T}g(f, z) - [f(x) - f(x - I)])^{2}k(x, z)dzd_{\mu_{I}}}$$

$$C_{1} = \max_{x} \frac{\int_{I} (\int_{Z} \{I^{T}g(f, z) - [f(x) - f(x - I)]\}k(x, z)dzd_{\mu_{I}}}{\int_{I} \int_{Z} (I^{T}g(f, z) - [f(x) - f(x - I)])^{2}k(x, z)dzd_{\mu_{I}}}$$

Relation between Sensitivity and Infidelity

To prove
$$SENS_{max}(g^k, f, x, r) \le \int_z SENS_{max}(g, f, x, r) k(x, z) dz$$

$$SENS_{max}(g^k, f, x, r) = \max_{||\delta|| \le r} \left| \left| g^k(f, x + \delta) - g^k(f, x) \right| \right|$$

$$= \max_{||\delta|| \le r} \left| \left| \int_z [g(f, z + \delta) - g(f, z)] k(x, z) dz \right| \right| \qquad \phi(x) = ||x|| \text{ is convex }$$

$$\leq \max_{||\delta|| \le r} \int_z ||g(f, z + \delta) - g(f, z)| ||k(x, z) dz$$

$$\leq \int_z \max_{||\delta|| \le r} [||g(f, z + \delta) - g(f, z)||] k(x, z) dz$$

$$= \int SENS_{max}(g, f, z, r) k(x, z) dz$$

$$\phi(x) = ||x|| \text{ is convex}$$

$$\phi\left(\int_{x} h(x)dx\right) \le \int_{x} \phi(h(x))dx$$

Experiments

Dataset: MNIST, CIFAR-10, ImageNet

Explanation methods: Grad, IG, GBP, SHAP, and –SG version

Datasets	MNIST		Datasets	MNIST		Cifar-10		Imagenet	
Methods	SENS _{MAX}	INFD	Methods	SENS _{MAX}	INFD	$SENS_{MAX}$	INFD	SENS _{MAX}	INFD
Grad	0.86	4.12	Grad	0.56	2.38	1.15	15.99	1.16	0.25
Grad-SG	0.23	1.84	Grad-SG	0.28	1.89	1.15	13.94	0.59	0.24
IG	0.77	2.75	IG	0.47	1.88	1.08	16.03	0.93	0.24
IG-SG	0.22	1.52	IG-SG	0.26	1.72	0.90	15.90	0.48	0.23
GBP	0.85	4.13	GBP	0.58	2.38	1.18	15.99	1.09	0.15
GBP-SG	0.23	1.84	GBP-SG	0.29	1.88	1.15	13.93	0.41	0.15
Noisy	0.35	0.51	SHAP	0.35	1.20	0.93	5.78	-	-
Baseline			Square	0.24	0.46	0.99	2.27	1.33	0.04

on MNIST dataset.

Table 1: Sensitivity and Infidelity for local and global explanations.

⁽a) Results for local explanations (b) Results for global explanations on MNIST, Cifar-10 and imagenet.

Experiments

Qualitative experiments

