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Preliminaries — Notation in explanations

Given an input x € R? with corresponding output y € R, and a target model f € F: R? - R.
The explanation model g: FxR% — R? provides importance scores g(f,x) for each input features.

f(x): VGG-16
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Preliminaries — SimpleGrad

[In the preliminary, we use the superscript e to denote a specific sample to explain.]

One choice for the explanation model is the partial derivative of f(x) with respect to x:

. 0
goim(f ey = L2

|x:xe

Sometimes, explanations take the form of element-wise product of inputs and the gradients:

in €Y .— € af(x)
o= 52|
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Preliminaries — SmoothGrad!(!

SmoothGrad (SG) alleviate the impacts of noise:
1) Take random samples around the input x®
x€ + €, ex ~ N(0,02)

2) take the average of the resulting heatmaps.
K
SG e 1 sim e
9o, x%) = 2 ) g (F, 2 + &)
k=1

. 0
goim(f,xe) = L

|x:xe

-1
g% (f,x®) = [ j k(xe,z)dz] j g(f, 2 )k(x®,z)dz

[1] Smilkov, Daniel, et al. "Smoothgrad: removing noise by adding noise." 2017. 4
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Preliminaries — IntegratedGrad!?!

Integrate the gradient along the path from the baseline to the input.

1

91 (f, x®) = (x® — x) X g5 (f,xo + t(x® —x,)) dt

t=0

t=0:x, +t(x®—x0) = x,

t=1:xy +t(x®—x,) = x°

[2] Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. "Axiomatic attribution for deep networks." 2017. 5
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Preliminaries — Completeness!3]

One desiderata of explanation - Completeness

da
D 90000 = £() = fxo)

Methods satisfying completeness:

IntegratedGrad, LRP, Shapley Values, ...

Methods unsatisfying completeness:

SimpleGrad, SmoothGrad, ...

[3] Ancona, Marco, et al. "Towards better understanding of gradient-based attribution methods for deep neural networks." 2017. 6
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What does this paper do?

Infidelity
Definition of infidelity
Find the Minimum of the infidelity

Relate to existing works and propose other alternatives for perturbations

Sensitivity
Definition of sensitivity

Relation between sensitivity and infidelity
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Infidelity

One desiderata of explanation - Completeness!dl

d
D 90000 = £() = fxo)
“"More rigorously” (sensitivity-n):

> 9 = F) - flxlxs = 0])
ics
where x[xs = a]; = all(j € ) + x;1(j € S)
For example:
x =1[1,2,4,7,9,13]; S = {1,34}; a = 0;
x[xs =a] = [0,2,0,0,9,13]

[3] Ancona, Marco, et al. "Towards better understanding of gradient-based attribution methods for deep neural networks." 2017. 8
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Completeness:
> 90,00 = FG0) - fxlxs = 0D
lES

Discrepancy of completeness:

corr( Y a(f0i,  FG) - f(xlxs, =0])
iESk

Problems:

1. the “default” value is fixed => more general perturbations?

2. Corr() is Pearson Correlation Coefficient. It is hard to optimize (intractable).
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Infidelity

Discrepancy of completeness in [3]:

corr (Z g(f! x)i ) [f(X) - f(X[XS = 0])])

€S

Definition of Infidelity:
INFD(g, f,%) = Er | (179 (F0 = (£ = f = 1)) |

I € R% is the perturbation around x.

1. replace fixed perturbations with random variable 1.

2. replace correlation with expected mean square error.

10
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Infidelity

The optimal g* = argming E;.,, [(ITg(f, x) = (f(x) — flx — I)))z]
If I satisfies that [ II"dy, is invertible:

g"(f.x) = (f 1 dy,) ™ (J HTIG(f, x, D)
IG(f,x, 1) = f;o Vf(x + (t — 1)I)dt is Integrated Gradient.

Recall: the SmoothedGard:

G(Fox) = Uk(x,z) dz] Jg(f,z)k(x,z)dz

g"(f,x) can be considered as applying SmoothGrad on Integrated Gradients, where kernel is not
Gaussian kernel but /17,

1
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g0 - (FG) - £ - D) ]

Prove: the optimal g* = argmin, E;_,, [

= argming [ |I7g(r.0) = (70 - ree = D)|[”
FOO) = fle—1) = jx V. f(wdu = jlvxf(x b wdus i jlvxf(x — [+ tDdt

1
ITg(f,x)—ITj Vof(x =1+ thdt|| dy,
0

= argminy j

To set the first order derivative to 0, and denote IG(f, x,I) = fol V.f(x—1+tlhdt
2f 1T (g*(f,x) = IG(f,x,1))du; = 0O
[ 1T g*(f,x)dp; = [ HTIG(f, x,Ddy,
g"(fx) = (J Tdw)” (S 1ITIG(f, 1)) duy

12
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Infidelity

Definition of Infidelity:

INFD(g, f,x) = Ej_,, [(ﬂg(f, x) = (fx) = flx - 1)))2]

Potential choices of I:
1. Difference to baseline(s): (x, can be random variable)
I =x—x,
2. Subset of difference to baseline: for fixed subset S < [d]
Is = x — x[xs = (x)s]
3. Difference to noisy baseline: (e ~ V' (0,0?2) is a zero mean random vector)

I =x—(x9+€)

13
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Infidelity

INED(g, £,2) = -y, [ (Mg () = (£G0 - f = D)) |

Varying I to recover existing works:
1. If I = x — x, is deterministic:

9" (f, x)®I satisfies completeness, can be IG, LRP and DeepLIFT.
2.1f I, = € - ¢;, where ¢; is a coordinate basis vector:

li_r)%g;(f, x) =V, f(x); is the gradient explanation.
3. If I = e;Ox:

9" (f,x)©Ox is the occlusion-1 explanation.

[occlusion-1 explanation replaces one feature x; at the time with a zero baseline and measuring
the effect of this perturbation on the target output.]

14
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Infidelity

INFD(g, f,%) = Er | (1790 = (£ = f = 1)) |
[Key: set infidelity to 0.]

P2.If I, = ee;, where e; is a coordinate basis vector:

€g"(f,x); = f(x) — fx — €ey).

As € - 0: limgz, (f, ) = lim T@-fm€ed) — g _£(x), is the gradient explanation along the i-th
€—

e—0 €

coordinate.

P3. If I = xQOe;:

x;i9"(f,x); = f(x) — f(x|x; = 0) is the occlusion-1 explanation.

15
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Infidelity

INFD(g, f,x) = Ej,, [(ﬂg(f, x) — (f&x) - flx - I)))z]

Varying I to recover existing works:

d-1

4.1f I = h,(Z), where Z € {0,1}¢. When P(Z = z) 0<< d )| | (a]izIl,)
il 1 (==,

g*(f,x)®Ox is the Shapley value.

h,(Z):{0,1}¢ - R< [selects subset], assume x = [0.5, 20,7, ..., 13]
7z =[111,..,1],  h.(z) =x =[05,20,7,...,13]
z, =[0,0,0,..,0],  hy(z,) =0=[0,0,0,..,0]
73 =[1,00,..,1],  h,(z3) =[05,0,0,...,13]

16
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INED(g, £,2) = -y, [ (Mg () = (£G0 - f = D)) |
Varying I for new possible explanations. (Used in experiments)
[Noisy Baseline]
Set the baseline to be a Gaussian random vector centered around a certain baseline.

I =x—(x9+€)

[Square Removal] (image only)
I = h,(Z) where the perturbation Z has a uniform distribution over square patches.

I =h(Z),Z ~Uniform

17
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Sensitivity

(Vector) For the j-th coordinate, the sensitivity of explanation is defined by the gradient:

9.9(f, 0], = lim L X ee) — 90
x ’ j

e—0 €

(Scalar) Compute the norm of the gradient:

SENSgrad(g:f; X,T) = sup ||ng(f,x + 6)”

[161|<r

Related to local Lipschitz continuity:

lg(f,x) — g(f,x + &)
SENSips(g, f,x,7) = sup
115]|<r 11511

[If an explanation has locally uniformly bounded gradients, it is locally Lipshitz continuous as well.]

18
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Sensitivity

In this paper, max-sensitivity is proposed:

SENSnax(9.f,%,7) = max [lg(f.x +6) = g (f. 0

max||g(fx+6) g(f, 0] < su ||g(f,x)—g(f,x+5)||.

r =SENS;;,s(g,f,x,7) -1
1517 ||5||<r |161] v

Local Lipschitz continuity can be unbounded when using RelLU, but max-sensitivity is always
finite.

[Can be estimated by Monte-Carlo sampling in experiments.]

19
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Sensitivity

The max-sensitivity is defined as:

SENSnax(9.f,%,7) = max [lg(f.x +6) = g (f. 0

Remarks:
1. Sensitivity is only one of desiderata.

2. Sensitivity is somehow “nature” of the target models and explanations.

It is nonsense to minimize the max-sensitivity only. We need to consider the fidelity and sensitivity
at the same time.

20
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Relation between Sensitivity and Infidelity

The smoothed explanation has less sensitivity and infidelity:
9.0 = [ 9.2 k(e 2)dz
g (f, x) is less sensitive than the original sensitivity:

SENSax(g®, fox,7) < fSENSmax(g,f, x,7) k(x,z)dz

g (f, x) is less infidelity than the original infidelity (when

—o—<1)

INFD(g*, f,x) < INFD(g, f,2)k(k, z)dz

C, j
1-2/¢ /),
P S LUE@ = fz-D—[f() — fGx — DD*k(x, 2)dzdy,
LT TG ) — [F 00 — & — DD2k(x, 2)dzd,,

f(f U"g(f,2) - [f(x) — f(x — D}k(x,2)dz) d,
LG 2 — [F () — f(x — D)2k, 2)dzdy,

C_

21
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Relation between Sensitivity and Infidelity

To prove SENSyax (g%, f.%,7) < [ SENSpax(g, f,x,7) k(x, 2)dz

SENSmax(g% f,%,7) = max g% (f,x +8) = g* (£, )|

= max
[151|<r

j l9(f, 2+ 8) — g(f, 2)k(x, 2)dz

Z

d(x) = ||x]| is convex
¢ ( j h(x)dx) < j ¢ (h(x))dx

< max j 19(f.z + 6) — (. 2)|lk(x, 2)dz

< | max[llg(f,z+8) - (f, 2l [kCx az

_ f SENS, ..(g, f. 2, ")k(x, 2)dz

zZ

22
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Experiments

Dataset: MNIST, CIFAR-10, ImageNet
Explanation methods: Grad, 1G, GBP, SHAP, and —-SG version

Datasets | MNIST | Datasets | MNIST | Cifar-10 | Imagenet |

Methods SENSwmax INFD Methods SENSmax INFD SENSmax INFD SENSwmax INFD

Grad 0.86 4.12 Grad 0.56 2.38 1.15 15.99 1.16 0.25
Grad-SG 0.23 1.84 Grad-SG 0.28 1.89 1.15 13.94 0.59 0.24
IG 0.77 2.75 IG 0.47 1.88 1.08 16.03 0.93 0.24
IG-SG 0.22 1.52 IG-SG 0.26 1.72 0.90 15.90 0.48 0.23
GBP 0.85 4.13 GBP 0.58 2.38 1.18 15.99 1.09 0.15
GBP-SG 0.23 1.84 GBP-SG 0.29 1.88 1.15 13.93 0.41 0.15
Noisy SHAP 0.35 1.20 0.93 5.78 - -

Baseline 035 051 Square 024 046 099 2.27 1.33 0.04

(a) Results for local explanations  (b) Results for global explanations on MNIST, Cifar-10 and imagenet.

SN Catance Table 1: Sensitivity and Infidelity for local and global explanations.
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Experiments

Qualitative experiments
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