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Abstract

In the past decade, research on network data has attracted
much attention and many interesting phenomena have been
discovered. Such data are often characterized by high
dimensionality but how to select meaningful and more
succinct features for network data received relatively less
attention. In this paper, we investigate unsupervised feature
selection problem on networks. To effectively incorporate
linkage information, we propose a Partial Order Preserving
(POP) principle for evaluating features. ~We show the
advantage of this novel formulation in several respects:
effectiveness, efficiency and its connection to optimizing
AUC. We propose three instantiations derived from the
POP principle and evaluate them using three real-world
datasets. Experimental results show that our approach
has significantly better performance than state-of-the-art
methods under several different metrics.

1 Introduction

In many machine learning tasks, one is often confronted
with the problem of high dimensionality. Hence, fea-
ture selection [1] [2] has become an important technique
since it can help alleviate the curse of dimensionality
and speed up the learning process. Depending on the
availability of class labels, feature selection algorithms
can be classified into supervised methods and unsuper-
vised methods. Our work focuses on unsupervised sce-
nario as class labels are usually expensive to obtain. A
variety of approaches has been developed for unsuper-
vised feature selection by following different principles.
In recent work, similarity-preserving approaches [1] [3]
and regression based approaches using pseudo labels [4]
[5] have gained much popularity among others.

Network data has become increasingly popular in
the past decade, because of the proliferation of vari-
ous social and information networks. Social media web-
sites such as Facebook, Twitter have millions of users
all across the world. Different forms of information net-
works, e.g, co-author network, citation network and pro-
tein interaction network, also attract considerable at-
tention to analyze [6] [7].

However, traditional feature selection approaches
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assume that instances are independent and identically
distributed (i.i.d). In relational data or information net-
works, the instances are implicitly or explicitly related,
with certain correlation and dependency. For example,
in research collaboration networks, the researchers who
collaborate with each other tend to share more similar
research topics than researchers with no collaboration.
But traditional approaches are not able to exploit such
rich information contained in the links. LUFS [8] is the
first attempt to incorporate network information for un-
supervised feature selection, but it uses the structural
information at community level via social dimensions [9)
and fails to exploit finer-grained link information. Also,
LUFS requires several parameters, which are hard to
tune in unsupervised setting.

Moreover, the ever increasing size of network data
poses additional challenges to feature selection. For
instance, Facebook and Linkedin have more than 1.28
billion! and 300 million? users as of 2014, respectively.
However, state-of-the-art unsupervised feature selection
methods [4] [5] [8] are prohibitively slow, as their time
complexity is usually cubic of the number of features or
instances. This makes these algorithms unpractical for
large-scale and high-dimensional data.

In this paper, we present a new perspective to
address these challenges regarding both effectiveness
and efficiency. We propose a Partial Order Preserv-
ing (POP) framework, which allows for parameter-free
mathematical formulation and efficient optimization.
Rather than simply preserving the similarity or local
manifold structure, POP aims to preserve the partial
order of similarity. Network data have abundant partial
order information: a node is usually more similar to its
neighbors than to the other nodes. By exploiting such
difference for feature selection, structural information
distinguishing neighbors from non-neighbors is incorpo-
rated. As a consequence, more discriminative features
can be selected. The main contribution of our work can
be summarized in the following:

e We propose a new principle for feature selection on

Thttp://en.wikipedia.org/wiki/Facebook
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networks: Partial Order Preserving (POP) princi-
ple, which selects features that best preserve partial
orders. As state-of-the-art approaches are mostly
pseudo-label based methods using L 1 norm [4] [5]
[8], POP brings a new perspective to the problem
of unsupervised feature selection.

e As the linkage relationship in the network is neither
complete nor noise free, we present three instanti-
ations of the POP principle, which are robust to
noisy/incomplete link information and are param-
eter free in the objective functions.

e We develop a highly efficient and unified opti-
mization algorithm for these three instantiations.
This makes our methods applicable to large-scale
datasets.

e We evaluate the proposed algorithms on three real
world datasets, and show the advantage of our
approach over the baseline methods using different
metrics.

2 Related Work

In this section, we briefly review related work on feature
selection (mainly on unsupervised feature selection).

2.1 TUnsupervised Feature Selection for Tradi-
tional Data In the unsupervised setting, there are var-
ious principles to guide the feature selection process.
One popular guiding principle is to preserve the local
manifold structure or similarity [1] [10] [3]. Recently,
pseudo label-based framework [4] [5] gained much pop-
ularity. Unsupervised Discriminative Feature Selection
(UDFS) [4] introduces pseudo labels to better capture
discriminative information and sparsity-inducing Lj
norm is used to select the feature in an iterative manner.
Non-negative Discriminative Feature Selection (NDFS)
[5] performs non-negative spectral analysis and feature
selection simultaneously. But both UDFS and NDFS
have computation complexity of O(D3*T +n?) (D is the
number of features, T is the number of iterations, n is
number of instances) as eigen-decomposition on D x D
matrix is performed in each iteration. This severely re-
frains them from being applied to high dimensional data
such as text or microarray data. Moreover, they have 3
~ 4 parameters to be specified in the objective function.
In supervised learning, appropriate parameters can be
found through grid search but in unsupervised setting,
there is no straightforward way to tune the parameters.

2.2 Feature Selection for Network Data Tra-
ditional feature selection techniques assume data in-
stances are independent and identically distributed

(i.i.d), which is not the case in network data. In recent
years, efforts have been made towards feature selection
on relational data. [11] addresses supervised feature se-
lection on network data via adding network-based regu-
larization term to enforce similarity between neighbors.
[12] explores supervised feature selection on social media
data and integrates different types of relations into the
feature selection framework. [13] studies co-selection of
features and instances in social media since both fea-
tures and instances can be noisy and irrelevant. [14]
investigates unsupervised multi-view feature selection
on social media but it does not utilize link information.
Linked Unsupervised Feature Selection (LUFS) [8] is the
only unsupervised feature selection method that utilizes
link information. LUFS exploits network information
through incorporating social dimension based regular-
ization [9] into the UDFS framework [4]. So it shares
the same downside of UDFS such as too many parame-
ters and high computational cost. Also, in LUFS, net-
work information is utilized at community/cluster level
and finer-grained information in the links is ignored. In
this paper, we propose a parameter-free framework for
unsupervised feature selection on network data, which
is more effective with lower computation burden.

Figure 1: An example network with 9 nodes

3 Problem Formulation

3.1 Partial Order on Network In this section, we
present several concepts as preliminaries of our Partial
Order Preserving (POP) principle for feature selection.
Our partial order is defined on an information network.

DEFINITION 1. Information Network An informa-
tion network G = (V, E,X) consists of V, the group
of vertices, E C V x V, the set of edges, and feature
matric X = [X1,X2,...,Xy] (i =1...n, n = |V| ),
where x; € {0,1} is the attribute vector of node v;.

In an information network, for each node v, the
remaining nodes can be divided to two categories based
on whether they are linked to v: linked set and unlinked
set.

DEFINITION 2. Linked Set For a node v € V, its
linked set is defined as the set L(v) of all the nodes which



are linked to v, i.e., u € L(v) & (u,v) € E.

DEFINITION 3. Unlinked Set For a node v € V, its

unlinked set is set of nodes U(v) which are not in the
linked set of v, i.e., U(v) = V/L(v)

Traditional i.i.d assumption does not hold for data
instances in networks because of the widely observed ho-
mophily effect. In recent years, many machine learning
algorithms on networks try to exploit this fact: friends
are similar. One popular technique is network based
regularization [11] [15], which enforces neighbor nodes
(i.e., nodes in linked set) to be similar.

But exploiting information solely from linked sets
is not sufficient for feature selection. Though good
features are likely to be shared by neighbors, not all
features shared by neighbors are of high quality. For
example, in citation network, neighbors (i.e., cited and
citing paper) are usually of similar topic because of the
homophily effect. As a result, they usually share some
topical words (e.g. SVM, LDA). But indiscriminative
words such as propose and compare are also shared by
many neighbors. So we take one step further to exploit
both the linked sets and unlinked sets: friends are
usually more similar than non-friends. Good features
should make neighbors look similar and non-neighbors
not so similar. We formulate this idea as link-based
partial order as follows.

DEFINITION 4. Link-based Partial Order We for-
mulate such property as partial order j >; k, where node
v; and node vy, are in the linked set and unlinked set of
node v;, respectively. Node v; is referred to as the pivot
of this partial order. Such partial order is denoted as a
triplet (i,7,k) or j >; k.

(3.1) sim(v;,v;) > sim(vs, vi),v; € L(v;), v € U(v;)

Let us take the network with 9 nodes in Figure 1 for ex-
ample. The linked set £(v3) of node v3 is {vy, va, v4, v9 },
while its unlinked set U (v3) is {vs, ve, v7,vs}. Generally
speaking, {v1,va,v4,v9} should resemble v more than
{vs, vg,v7,v8} to v3. There are 4 x 4 = 16 partial order
triplets (e.g., (3,1,6), (3,1,7), (3,2,5)) w.r.t pivot vs.

This link-based partial order aims to capture the
difference between linked set and unlinked set, i.e., what
distinguishes linked set from unlinked set. The major
difficulty of unsupervised feature selection comes from
the lack of label, as the labels can provide clear guid-
ance: features providing good separability of different
classes are high-quality ones. In unsupervised scenario,
we will show partial order can serve a similar purpose as
class label. Features of good quality should be able to
distinguish the linked set from the unlinked set, which
is the intuition underlying our approach.

Table 1: Symbol definitions

Symbol Definition

x; € {0, 1}D Feature vector of node v;
L(v;) Linked set of node v;
U(v;) Unlinked set of node v;

5ij Similarity between node v; and v; after feature selection
Difference between s;; and s;;

Partial order triplet in which v; € L(v;), v, € U(v;)
Same as above

Q Set of all partial order triplets (4, j, k)

Sijh

(7> k) The extent to which j >; k is preserved
L(>) The extent to which all partial orders are preserved
w € {0,1}P  Feature selection indicator vector

3.2 Partial Order Preserving Feature Selection
(POPFS) Suppose the feature vector of node wv; is
x; € {0,1}P and our goal is to select d (d < D)
features. Without loss of generality, we assume binary
features since categorical or numerical features can be
transformed to binary features (e.g., by binning). In
order to do feature selection, we introduce an indicator
vector w = (wi,wa,...,wp)T, w; € {0,1} (Vi =
1,..., D). Then we construct a diagonal matrix diag(w)
from w. Therefore, the data instance x; after feature
selection is diag(w)x;. A set of important symbols used
in this paper are summarized in Table 1.

Based on the link-based partial order defined above,
it is desirable that partial order is preserved after feature
selection. This can be formulated as follows.

(3.2)
sim(diag(w)x;, diag(w)x;) > sim(diag(w)x;, diag(w)xy)

In principle, sim(-,-) could be any similarity metric
defined on the feature vector, such as Cosine Simi-
larity. To make the optimization simple, we use in-
ner product as the similarity measure. We denote
sim(diag(w)x;, diag(w)x;) as s;;. Rather than the ab-
solute values of s;; and sy, we are more interested in
their relative difference s;jy.

Sijk = Sij — Sik

3.3
3:3) = x; diag(w)x; — x; diag(w)xy

We further define an objective function I(j >; k | w)
over the partial order triplet (4, j, k) to quantify to what
extent the partial order j >; k is preserved.

(3.4) W(j>ik|w)=f(sijr | W)

A monotonically non-decreasing link function f is used
to connect I(j >; k) with s;;,. When s, is large, it
means (i, j, k) is well preserved; when s;;, is small (e.g.,
a negative value), it means (4, j, k) is poorly preserved.
Different types of link function can be adopted, for
example, identity function or sigmoid function.



However, similar nodes may not be always con-
nected in networks. For example, in co-author network,
Jiawei Han and Christos Faloutsos have not collabo-
rated though they work on similar research topics. So
we cannot expect every (j >; k) derived from the net-
work to be preserved. But in an aggregate sense, a set
of good features should make the partial order triplets
derived from network structure minimally violated (i.e.,
maximally preserved). Let us denote the set of all the
partial order triplets as (2.

(35) QZ{(Z,],k”ZEV,]Gﬁz,kEZ/{z}

We are interested in preserving the aggregated partial
order L(>). This leads to maximizing I(-) over all
triplets with constraint Z?ZI w; = d where d is the
number of selected features.

oG ik | w)

(4,4,k)€Q

=33 Flsije | w)

i€V jeL; keU;

D
s.t. w; € {0,1}, sz =d
i=1

max L(>) =

w

(3.6)

4 Instantiations of the POP Framework

In previous section, we introduce the unified frame-
work for Partial Order Preserving Feature Selection
(POPFS). In this section, we present three instantia-
tions of the POP principle: Simple POP, Probabilistic
POP and Max-Margin POP, which have different inter-
pretations.

4.1 Simple POP (SPOP) For simplest case of link
function, we can use identity function as f. It is easy
to show that the optimization problem in Eq. (3.6) is
equivalent to calculating the following score for each
feature.

(4.7) score(a) = Z I(i,j,a) — Z I1(i,k,a)

(i,,k)€Q (i.j,k)EQ

where I(i,j,a) is an indicator function, which equals
1 if both nodes 7 and j have feature a and equals 0
otherwise. The first part of the score is the number
of neighbor pairs sharing this feature a, which we refer
to as the linked score of feature a; the second part of
the score is the number of non-neighbor pairs sharing
feature a, referred to as unlinked score. The final score
of each feature is the difference between linked score
and unlinked score. After we calculate the score using
Eq. (4.7), we can simply select the top d features with
the highest scores. By using identity link function,

it does not consider interaction among features and
therefore each feature can be evaluated independently.

This decomposition reveals several useful properties
about SPOP and provides better understanding of this
principle. If a feature’s final score is above zero, it
means its linked score is larger than its unlinked score.
This indicates that, statistically, this feature appear
more often in linked nodes than in non-linked nodes.
Consider for example a citation network with papers
from several topics (e.g., Machine Learning, Database,
System). A generic feature (e.g., stop word) will have
both high linked score and unlinked score because of its
indiscriminative presence in nodes. The final score will
be low as a result. The domain-specific features (e.g.,
SVM, classification) tend to have high linked scores
and relatively low unlinked scores. Hence, the domain-
specific terms will be retained and generic terms will
be discarded by the feature selection process. As a
result, unsupervised learning tasks, such as clustering,
will benefit from this.

Although real-world networks can provide rich link
information for constructing partial orders, they are of-
ten noisy by nature. If a noisy link connects two dis-
similar nodes by accident, it will have minimal impact
on the score calculated by SPOP. For example, given
node v;, consider two nodes v; € £; and vy, € U;. Sup-
pose both v; and v, are not similar to v; but v; ap-
pears in £; as noise. For an indiscriminative feature
a, v; and v would have similar probability to have it.
So, by expectation this will not increase score(a) since
E[I(i,j,a) — I(i,k,a)] = 0. If we only utilize linked set
through preserving Graph Laplacian without using un-
linked set, feature selection would be possibly misled by
noisy links. This illustrates another strength of preserv-
ing partial order against preserving the absolute value
of similarity.

4.2 Probabilistic POP(PPOP) Though SPOP is
simple and intuitive, it evaluates features individually
and hence fails to take into consideration the correlation
between features. In this and the following section,
we develop two instantiations which evaluate features
jointly.

From a generative point of view, we assume all
the partial orders are generated from the indicator
vector w € {0,1}”. More specifically, we model the
probability of preserving partial order j >; k as

where o(x) = 1/(1 4+ e~ %) is the sigmoid function. The
larger s;;r is, the more likely partial order j >; k
is preserved. By assuming the partial orders to be
independent, the probability P(> |w) of all the partial



orders being respected given w is,

P(>|w)= [] PG >iklw)
(i,4,k)€EQ

= I o)

(i,4,k)€Q

(4.9)

The goal is to find the feature indicator vector w which
maximizes P(> |w) (i.e., to preserve the aggregated
partial orders with maximum probability). Learning
this model can be performed by maximizing the log-
likelihood,

max log P(> |w) = Z log P(j >; k|w)
v (i4.k)EQ

= Z log O’(Sijk)

(i,5,k)€82

D
s.t. w; € {0,1}, Zwl =d
i=1

(4.10)

It provides a probabilistic interpretation for the partial
order preserving principle. The connection between
Eq. (5.17) and Eq. (3.6) is easy to see: logo(-) is used
as the link function.

4.3 Max Margin POP (MMPOP) Structured
learning methods, such as Structural SVM [16], have
gained substantial popularity in the past decade and
are powerful for combinatorial optimization. Preserving
partial order is to well separate the linked and unlinked
sets for each given pivot, which fits well into structural
learning framework as follows.

.1 9
min —||w]|
(4.11) w' g
s.t. Sijk > 1,V(i,j, k) e

However, in real world networks, the linked set and
unlinked set are not always linearly separable using w,
as in the Jiawei Han/Christos Faloutsos example. So,
to address this issue, we add an slack variable ;5 to
impose soft margin.

Z Hijk

(4,5,k)€Q
s.t. Sijk >1-— p,ijk,V(Z',j, k) ISy

min
w
(4.12)

D
w; € {0,1}, Zwl =d
i=1

To make clear its connection to the Eq. (3.6) in the
general framework, we rewrite it as follows.

Z —max(0,1 — s;jx)

(i,5,k)€Q

D
s.t. w; € {0,1}, Zwi =d
i=1

max
w

(4.13)

So, Eq. (5.18) is equivalent to using negative hinge loss
as link function in Eq. (3.6).

4.4 Connection to AUC Optimization To fur-
ther justify using the POP principle for feature selec-
tion, we show how it is related to optimizing AUC.
AUC (Area Under ROC Curve) is a widely used metric
for evaluating binary prediction problem such as rec-
ommender system and link prediction. Optimizing the
objective based on POP optimizes the AUC for link pre-
diction.

(4.14)

where indicator function I(-) returns 1 if s, > 0 and 0
otherwise .

AUC = % Y AUC(v;)

eV
(4.15) L=
(6:4,k)€Q
where Z = |L;||U;]|V] is a normalizing constant.

Comparing the objective function in Eq. (3.6) with
Eq. (4.15), it is obvious to observe the connection with
AUC optimization. AUC uses a non-continuous indi-
cator function I(-) as the loss function, while PPOP
and MMPOP use continuous loss function (logistic loss
and hinge loss, respectively) to approximate the non-
continuous counterpart.

Features selected by methods following different
principles tend to have different properties. From
the analogy between POP and AUC, we know that
features selected by POP based methods are optimal
in terms of preserving the network structure. This
implies that POP-based feature selection methods can
be particularly useful for link prediction task.

5 Optimization

For Simple POP (SPOP), one only needs to calculate
linked score and unlinked score and rank features by
their final scores. Optimization for MMPOP and PPOP
is a mixed 0 — 1 integer programming problem, which is
NP-hard in general. To make optimization tractable, we



relax the ”0/1” constraint in the integer programming
problem by replacing w; € {0,1} with w; € R. Such
real-valued weights can be intuitively interpreted as
features’ Importance Score. Then we can rank the
features by their importance scores in w and output the
top d features. A challenge for all POP instantiations is
that, there are a large number of potential partial order
combinations (O(n|E|)). It would be very inefficient to
iterate through all these O(n|E|) partial order triplets.
So we propose to use a bootstrap sampling based
technique, Stochastic (Sub)Gradient Descent, to solve
the optimization problem. In addition to efficiency,
sampling based technique is also more robust to noise
and outliers.

The objective functions of all three instantiations
are convex since they use convex link function f. Since
the link functions in SPOP and PPOP are both dif-
ferentiable, the optimization problem can be efficiently
solved by Stochastic Gradient Descent (SGD) method.
But MMPOP uses hinge loss which is not differentiable.
To solve the optimization problem of MMPOP, we can
calculate subgradient and employ Stochastic Subgra-
dient Descent. Hence, all three instantiations can be
solved using a unified framework, which is presented
in Algorithm 1. In each iteration, we sample a triplet
(4,4, k), calculate the (sub)gradient and update w.

Simple POP has the simplest form of gradient.

ol(j > k 0
For probabilistic POP (PPOP), the gradient for one
sample is calculated as follows:

(5.17)

oG >ik) 8,
Tow ow! Uik

e~ Siik 0
= s
T+esur ow "
For Max Margin POPFS (MMPOP), we calculate the
subgradient and only update the weight vector when
1-— Sijk > 0:

81(3 > k) . %Siﬂg if Sije < 1
(5.18) ow o 0 otherwise
For these three approaches,
(5.19)
P 1 ifzyp=1&z,=1& x3, =0
Fu_ Siik = -1 ifa,=1& 2, =0& x3, =1
p 0 otherwise

where z;;, is the p-th feature in x;. From the gradient
formula of three approaches, one can observe that the
gradient on the p-th feature in SPOP is not influenced
by other features. In PPOP and MMPOP, the gradient

is impacted by s;ji: when s;;; is large, the gradient
is a small value (e ®4*/(1 + e ®¥*)) in PPOP or
0 in MMPOP. Such updating scheme addresses the
redundancy issue in feature selection.

Algorithm 1 Stochastic (sub)gradient descent algo-
rithm for POP
w <« [0,0,...,0]
for (¢t in 1..T) do
step size n; %
update w;11 < Wy — 1 * Ay, using corresponding
formula (5.16), (5.17) or (5.18) for A;
end for
Sort features w.r.t. w(i] and output the top d features

The optimization error can be bounded as shown in
the following theorem.

THEOREM 5.1. Assume that the data is bounded such
that maz; x!diag(w)z; < R and R > 1. In
algorithm 1 at iteration T, with A < %, and batch-size
B=1w= % Zthl wr be the average w by iteration
T. Then, with probability of at least 1 — 9,

< 21R21n(T/6)_

(5.20) T

f(w) —minf(w?)

Proof Sketch: Algorithm 1 is an instance of
PEGASOS without a projection step on one-class data.
Corollary 2 in [17] proves the same bound for traditional
SVM input ( without a projection step).

In each iteration, it takes O(m) time to update w,
where m is the average number of non-zero features in
each data point. This effectively exploits the fact that,
in many datasets, m is often small though D can be
large. If we sample T triplets of (7,7, k), the overall
time complexity is O(mT). Since our goal is feature
selection, only the rank of weights w; is needed. It
means w does not need to be too precise (i.e., § does not
need to be very small). By employing SGD algorithm
in Algorithm 1, SPOP, PPOP and MMPOP can be
efficiently solved for large-scale networks. In addition,
SGD can be updated in an online fashion. This is
very useful since new nodes continuously join real-world
networks.

6 Experiment

In this section, we conduct systematic experiments on
three publicly available datasets. We compare our POP
methods with four baselines on both efficiency and
effectiveness. To illustrate how POP methods differ
from existing mechanisms, we evaluate the selected
features on both clustering task and link prediction task.



Table 2: Statistics of three datasets

Statistics Citeseer | Cora | Wiki
# of instances 3312 2708 | 3363
# of links 4598 5429 | 33219
# of features 3703 1433 | 4973
avg. # of non-zero features per instance | 31.75 18.17 | 630.57
# of classes 6 7 19

Experimental results show that POP can select well-
rounded features which achieve top performance in both
tasks.

6.1 Datasets We use three publicly available net-
work datasets: Citeseer dataset, Cora Dataset and
Wikipedia dataset 3 [18]. The statistics of three datasets
are summarized in Table 2.

6.2 Baselines We compared our approach to the
following baseline methods.

o All Features.
e Link Only: Spectral clustering using network links.

e Laplacian Score (LS): Laplacian score [1] selects the
features which can best preserve the local manifold
structure.

e UDFS: Unsupervised Discriminative Feature Selec-
tion [4] is a state-of-the-art pseudo-label based ap-
proach for i.i.d data. Unlike Laplacian score, UDFS
selects features jointly rather than individually.

e LUFS: Linked Unsupervised Feature Selection is
a state-of-the-art unsupervised feature selection
method [8] designed for linked social media data,
which combines the idea of social dimension [9] with
UDFS.

6.3 Efficiency In this section, we investigate the
efficiency of POP Feature Selection (POPFS) and the
baseline approaches. Baseline methods UDFS and
LUFS rely on an iterative method to converge to a local
optima. In each iteration, it heavily involves matrix
computation and therefore is very inefficient even for a
medium-sized (1000 ~ 10000) feature set. POPFS has a
convex formulation and can be optimized by Stochastic
Gradient Decent (SGD). In practice, sampling a small
portion of partial order triplets is usually enough. In our
experiment, we find sampling |E| ~ 2|E| triplets (| E| is
the number of edges) is sufficient for good performance.

3For detailed information about the datasets, one can refer

to http://lings.cs.umd.edu/projects//projects/lbc/index.
html

Table 3: Running time (seconds) of different feature
selection algorithms

Dataset || LS | UDFS | LUFS | SPOP | PPOP | MMPOP
Citeseer || 10 | 1234 1420 1 2 2

Cora 5 161 113 1 1 1

Wiki 23 | 2536 2788 19 22 19

Table 3 reports the running time of different fea-
ture selection algorithms. POPFS requires much less
running time than baseline methods (especially UDFS
and LUFS). For example, on Citeseer dataset, UDFS
takes nearly 20 minutes to converge, while POPF'S only
needs 1 or 2 seconds. The running time of LS is rel-
atively close to POPFS but it only evaluates features
individually. Real world social networks (e.g. Facebook
and Linkedin) or information networks (e.g., DBLP and
biological network) have ever increasing sizes in terms of
both number of instances and number of features. Our
SGD-based approach can significantly reduce computa-
tion time without trading off too much effectiveness.

6.4 Results on Clustering In this section, we eval-
uate the quality of selected features by their cluster-
ing performance. Following the typical setting [4] [§]
of evaluation for unsupervised feature selection, we use
Accuracy and Normalized Mutual Information (NMI) to
evaluate the result of clustering. Accuracy is measured
as follows.

1 n
(6.21) Accuracy = - ;I(Ci = map(p;))

where p; is the clustering result of data point 7 and
¢; is its ground truth label. map(-) is a permutation
mapping function that maps p; to a class label using
Kuhn-Munkres Algorithm.

Normalized Mutual Information (NMI) is calcu-
lated as follows. Let C' be the set of clusters from the
ground truth and C’ is obtained from a clustering algo-
rithm.

MI(C,C")
max(H(C), H(C"))

(6.22) NMI(C,C") =

where H(C) and H(C') are the entropy of C' and C’
and MI(C,C") is the mutual information. Higher value
of NMI indicates better quality of clustering.

We use the default parameter setting suggested in
the original papers for the baseline methods. For the
number of pseudo classes in UDFS and LUFS, we use
the ground-truth number of classes. As in previous work



[4] [8], we use K-means® for evaluation. Since Kmeans
is affected by the initial seeds, we repeat the experiment
for 20 times and report the average performance. We
vary the number of features from 200 to 800, with an
increment of 200. The KMeans clustering performance
for three datasets is shown in Figure 2.

Among three POP instantiations, MMPOP and
PPOP have better clustering performance than SPOP.
This demonstrates the importance of evaluating features
in a joint manner. SPOP does not take into consider-
ation correlation between features and the redundancy
in selected features makes the clustering result subop-
timal. With only 200 features, MMPOP and PPOP
can obtain much better accuracy and NMI than using
all the features. For instance, compared with using all
features, MMPOP with 200 features improve the accu-
racy of KMeans by 10.6% on Citeseer dataset. Besides
the improved accuracy and NMI, using selected features
rather than all features would also result in speed-up of
clustering time.

When comparing POP with the baseline methods,
we observe that POP based methods (especially PPOP
and MMPOP) consistently perform better than baseline
methods in terms of both accuracy and NMI. This
indicates that POP is an effective criterion for selecting
high-quality features. Also, POP tends to obtain good
performance with a small number of features (i.e., 200
to 400) while baseline methods normally need more
features (i.e., 600 to 800).

Another thing worth noting is the poor performance
of clustering with only link structure. Since links in
networks are often sparse and noisy, structural infor-
mation alone is not sufficient to obtain good clusters.
But using link structure as guidance to select features
achieves much better performance, which illustrates the
strength of the POP feature selection. Baseline LUFS
exploits link information via extracting social dimen-
sions [9] from links. But social dimensions extracted
from noisy and sparse links can be unreliable and this
may further mislead the feature selection process.

6.5 Partial Order Preserving Property Our ap-
proach (POP) has an objective of preserving partial or-
der as described in previous sections. In this section,
we illustrate this partial order preserving effect through
kNN (we use k = 1) link prediction. For each node v,
we retrieve the top 1 node u of highest similarity to v.
We test if this retrieved node v is an actual neighbor
of node v on the network. The precision@1 is shown in
Figure 3.

TWe use the code at http://www.cad.zju.edu.cn/home/
dengcai/Data/Clustering.html
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Number of selected fealures
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Figure 2: KMeans Results on Three Datasets

Since this 1NN retrieval uses content only, the pre-
diction performances of all methods are very limited. It
also indicates that many similar nodes are not connected
in these three datasets. Under such circumstances, POP
approaches still outperform other feature selection base-
lines. This means POP is robust to incomplete link
structure.

POP approaches outperform the baseline methods
(LS, UDFS, LUFS) significantly. PPOP and MMPOP
usually improve the performance of three other baselines
by more than 50% on each dataset. This illustrates that
POP’s strength in respecting the network structure due
to its connection to AUC optimization. The three in-
stantiations of POP perform similarly on Citeseer and
Cora datasets. But on Wiki dataset, the performance
of SPOP degrades significantly. This is because SPOP
ignores the correlation between features and only ana-
lyzes each feature individually. This might not result in
serious problem when the number of non-zero features
in each instance is low (e.g., Citeseer and Cora). How-
ever, it would lead to degenerated performance when
the number of non-zero features per instance is large,
which is the case in Wiki dataset.

LUFS has the ability to incorporate network struc-
ture through social dimension. But it utilizes the net-
work information at a community level and fails to ex-
ploit the finer grained information of networks. To fur-



Table 4: Average document frequency (df) of selected
features (top 400)

Dataset || All features | LS UDFS | LUFS | SPOP | PPOP | MMPOP
Citeseer || 28.40 10.23 | 102.39 | 76.11 | 134.30 | 84.48 | 70.81
Cora 34.34 52.62 | 7T1.61 | 56.59 | 80.53 58.42 | 55.67
Wiki 426.42 598.71 | 946.91 | 678.41 | 1084.40 | 274.31 | 262.20

Nomber of seced feares Nomber of sected feares " N of sl el

(a)  Precision@l (b) Precision@1
on Citeseer on Cora

(c) Precision@1 on
Wiki

Figure 3: 1NN Results on Three Datasets

ther understand the difference between different meth-
ods, we present the average document frequency (df) of
features selected by each approach. As shown in Ta-
ble 4, UDFS tends to select features with high df. This
might be fine for clustering, but it loses too much mi-
croscopic information. In comparison, PPOP and MM-
POP can make a more balanced selection without fa-
voring features with high df in particular. In summary,
the features selected by POP are not only better for
macroscopic analysis such as clustering, but also good
at microscopic analysis because POP respects the local
partial order.

7 Conclusion

Network structures present valuable information as well
as new challenges to feature selection. In this paper, we
develop an efficient unsupervised feature selection algo-
rithm for network data based on partial order preserv-
ing (POP) principle, a new perspective on using links
to guide feature selection. Our method is conceptually
simple and computationally efficient, whereas state-of-
the-art approaches typically involve heavy matrix com-
putation and are intractable for large real world net-
works. Also, state-of-the-art approaches usually have
several parameters to tune. In contrast, our approach
is parameter-free. Experiments indicate that our ap-
proach significantly outperforms state-of-the-art meth-
ods in terms of both efficiency and effectiveness.
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