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Abstract

The connection between online users is the key to the success
of many important applications, such as viral marketing. In
reality, we often easily observe the time when each user in
the network receives a message, yet the users’ connections
that empower the message diffusion remain hidden. There-
fore, given the traces of disseminated messages, recent re-
search has extensively studied approaches to uncover the un-
derlying diffusion network. Since topic related information
could assist the network inference, previous methods incor-
porated either users’ preferences over topics or the topic dis-
tributions of cascading messages. However, methods com-
bining both of them may lead to more accurate results, be-
cause they consider a more comprehensive range of avail-
able information. In this paper, we investigate this possi-
bility by exploring two principled methods: Weighted Topic
Cascade (WTC) and Preference-enhanced Topic Cascade
(PTC). WTC and PTC formulate the network inference task
as non-smooth convex optimization problems and adopt co-
ordinate proximal gradient descent to solve them. Based on
synthetic and real datasets, substantial experiments demon-
strate that although WTC is better than several previous ap-
proaches in most cases, it is less stable than PTC, which con-
stantly outperforms other baselines with an improvement of
4%~10% in terms of the F-measure of inferred networks.

1 Introduction

Recently, “ALS Ice Bucket Challenge”, which is an activ-
ity to promote the awareness of amyotrophic lateral scle-
rosis (ALS), went virally through social media. Because
of the participation of numerous political figures and other
celebrities, 1.2 million related videos were shared by Face-
book users between June 1 and August 13, and Twitter users
mentioned this activity 2.2 million times between July 29
and August lﬂ Similar to the videos and tweets of “ALS
Ice Bucket Challenge”, we refer a piece of information that
spreads through social networks as a contagion or cascade.
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Figure 1: A sketch of proposed frameworks

1.1 Network Inference Problem. Normally, it is easy for
us to record the trace of a cascade: the timestamps when
users share/post the message (also called infected). On the
contrary, the underlying network structure that carries the
diffusion of a co-anchorntagion is usually hidden. An online
blog user, for instance, seldom specifies his/her information
source when s/he posts a blog. However, the embedded dif-
fusion network is critical to many real applications, such as
viral marketing [11]]. As a result, inferring the latent diffu-
sion network from the observed cascades, a.k.a. network in-
ference problem, becomes an important and prevailing task
related to information networks.

1.2 Related Work. Recently, the network inference prob-
lem has been extensively studied by numerous researchers.
In 2010, based on the basic assumptions of Independent Cas-
cade model [11]], Rodriguez et al. proposed NetInf [7], ini-
tially utilizing survival analysis to solve the network infer-
ence problem. The method iteratively added “most likely”
edges among people to unveil the hidden structure of the dif-
fusion network. Similar idea was also used in [[16], with
an additional constraint that the diffusion networks should
comply with tree structures. However, the inferred edges
in both these models were presumed to be identical, mean-
ing that they did not differentiate the strengths of different
edges (a.k.a. the probabilities to infect the connected users).
To compensate this disadvantage, [6] systematically studied
the network inference problem under three distinct paramet-
ric models. The proposed NetRate method was able to out-
put not only the structures of diffusion networks but also the
strength on each edge. NetRate formulated the network in-
ference problem as a convex optimization problem and uti-
lized Stochastic Gradient Descent (SGD) method to effi-



ciently solve it. Afterwards, various approaches were pro-
posed to either improve the effectiveness or the efficiency of
the NetRate [4}8}|19}/20], while other non-survival analysis
based methods to solve similar problems include [[1}/14}/17].

In reality, topic related data that can be used to assist
the inference are often available. On the one hand, a user’s
preference over different topics is usually retrievable from
his/her profile or historical data. For instance, in an on-
line social network, a user’s preference can be explicitly ex-
tracted from the interested topics s/he has marked or implic-
itly approximated by the topic distributions of the contagions
that previously infected him/her. To utilize the preferences
of users, MoNet [|19] added an extra weighting term to Ne-
tRate model, which penalized the edges that connected users
with very different preferences. On the other hand, the topic
distribution of a cascade can also be extracted from the cas-
cade’s textual information through methods such as Latent
Dirichlet Allocation (LDA) [2]]. Topic Cascade [4] model
employs this type of information to infer topic-sensitive dif-
fusion networks. In other words, the strength of inferred
edges by Topic Cascade could change with respect to dif-
ferent topics. This might better fit real networks: a user may
have a significant impact on one of his/her friends due to
his/her authority related to one topic, but it does not mean
s/he is an expert in all domains. Experiments showed that
MoNet and Topic Cascade could infer diffusion networks
more accurately comparing to NetRate.

1.3 Motivations and Proposed Methods. Although
MoNet and Topic Cascade utilize the preferences of users
and the topic distributions of cascades, respectively, neither
of them is capable of incorporating both types of informa-
tion. Intuitively, it is possible to better infer the network
by considering a more comprehensive range of available
information, which is exactly the motivation of this paper.
Neglecting either users’ preferences or the topic distri-
butions of cascades might cause potential problems. On the
one hand, without utilizing the preferences of users, if we
observe that a cascade belongs to a topic and has two sequen-
tially infected users, Topic Cascade might obtain an edge be-
tween them with respect to the topic. However, the user that
gets infected later might be actually influenced by a third
user, who has similar preference over topics. Here we accept
the presumption that users with similar preferences have a
higher chance to influence each other, which is confirmed by
MoNet [19]. On the other hand, without incorporating the
topic distributions of cascades, the strength of an inferred
connection by MoNet is uniform across all topics. In other
words, there is no topic distribution over the inferred edges.
However, the fact that topic-sensitive networks better mimic
real diffusion networks is shown by Topic Cascade [4].
Furthermore, how to judiciously synthesize the user
preferences and the topic distribution of cascades remains

unexplored. In fact, it is usually much harder to infer
a topic-sensitive network, since it has more parameters
and the model’s additional regularizers require more time-
consuming algorithms to get a solution. Therefore, although
numerous possible combination methods could be used to
incorporate both types of information, incorporating them
without increasing a model’s complexity is still challenging.
Inspired by MoNet, we first introduce Weighted Topic Cas-
cade (WTC), which is a framework that directly transforms
user preference vectors into a weighting term and adds it to
Topic Cascade. However, comparing to the improvement
that MoNet brings to NetRate, the experiments show that
WTC does not significantly prevail over Topic Cascade in
some cases. An intuitive explanation to this phenomenon is
that after transforming the preferences of users into one sin-
gle scalar, WTC might lose the abundant topic modulated in-
formation contained in the original preference vectors. In or-
der to overcome the drawback, we propose the second frame-
work, namely Preference-enhanced Topic Cascade (PTC),
to directly combine the user preference vectors and the topic
distributions of cascades. Extensive experiments show that
PTC constantly outperforms WTC and other baselines on
both synthetic and real datasets. Fig. [l| provides a sketch
of these two proposed frameworks. We sum up the major
contributions of this paper as follows:

e To the best of our knowledge, we are the first ones
to explore principled methods to combine both user
preferences and the topic distributions of cascades
when inferring networks. To achieve it, we design
two frameworks, Weighted Topic Cascade (WTC) and
Preference-enhanced Topic Cascade (PTC).

e We successfully adopt coordinate gradient descent [[18]]
with proximal mapping [[15] to learn parameters for the
proposed frameworks.

Based on substantial experiments on both synthetic and
real datasets, we compare the performance of WTC
and PTC to several state-of-the-art models. We show
that although WTC outperforms previous models in
many cases, it is less stable than PTC, which constantly
outperforms other methods with an improvement of
4% ~10% on the F-measure of inferred networks.

Our work offers important insights for future research
that attempts to adopt the rich topic information of users
and cascades to infer topic-sensitive networks. Models
attempting to transform topic modulated vectors into
weighting scalars, like WTC, has the risk of losing the
abundant information in the original vectors and thus
hurt the performance of such models.

We organize the rest of the paper as follows: Section 2
introduces preliminary and background knowledge. The de-
scription of proposed frameworks are in Section 3. Section 4



Notation Meaning
te The infection time of each user to cascade ¢
AC The difference between the infection time of
70 user ¢ and j with respect to cascade ¢
f() Transmission likelihood
S(-) Survival function
H(-) Hazard function
N Number of users in the network
K Number of topics
T The length of observation time window
u; User preference vector of user %
Ve The topic distribution of cascade ¢
w(-) The weight function in WIC: R x R — R
h(-) The mapping function in PTC: R x REX — RE

Table 1: Important Notations

and 5 present the experimental evaluation of the frameworks
on synthetic and real data, respectively. Finally, Section 6
concludes this article.

2 Preliminaries

2.1 Notations. First of all, we introduce some fundamen-
tal concepts and analysis tightly related to our research. We
denote a diffusion network by G = (V, ), where V is the
set of users/nodes and £ is the set of edges. The edges in £
are directed, since the influence between two users are usu-
ally asymmetric. A cascade refers to a contagious message
that spreads through the edges in the network. Usually, we
are able to observe the time when a node is infected by the
cascade. Thus, if we denote |V| = N, each cascade can be
represented as a vector of length N: t¢ = (¢7,t5,...,t%),
where ¢ is the infection time of the i'" node to the cascade
¢, and t§ € [0, 7¢]U{oo}. T is the length of the observation
time window for cascade ¢, and oo marks the nodes that are
not infected within the time window. Each cascade has a sep-
arate clock, and it is set to O at the time point when the first
node is infected. For simplicity, we usually fix the time win-
dows of all cascades to the same length, a.k.a. T° =T, Ve.
The topic distribution of a cascade c is denoted as a
nonnegative normalized vector: ve = (Vc,1,Ve2, - Ve, K )
where K is the number of topics, v.; > 0,Vi,c and
Zfil Ve,; = 1, Ve. More particularly, v, ; can be interpreted
as the probability that ¢ belongs to the i‘" topic. Accordingly,
the j*" node’s preference over topics is also denoted as a
nonnegative normalized vector: u; = (uj,1,; 2, ..., Uj K ),
where u;; > 0,4, and Y1 w;; = 1,Vj. Similarly, u;,;
can be interpreted as the probability that an infected cascade
of the j** node belongs to the i*" topic. Furthermore, we
assume that v, and u; are in the same topic space, meaning
that each indexed topic has the same meaning in v, and u;.
For clearness, some important notations are listed in Table

2.2 Survival Analysis for Network Inference. This sub-
section revisits survival analysis for inferring diffusion net-
works from observed cascades, which contains the prelim-

inary knowledge to understand NetRate [[6], MoNet [19],
Topic Cascade [4] and our methods. The standard survival
analysis does not adopt additional features, such as user
preferences or the topic distributions of cascades. Similar
to [4,/19], we attempt to add such additional information,
while preserving the model’s soundness and flexibility.

For a cascade t¢ = (t§,t5,....t%), we assume the
influence of each node can only propagate forward time. In
other words, an infected node will not have further influence
on any node who is already infected. With respect to
a specific cascade, transmission likelihood refers to the
conditional likelihood that an infected node, say ¢, is infected
by another node j, given the fact that j is infected. The
transmission likelihood is a function of Af ; and «; ;, where
AS$ ; is the time difference between ¢’s infection time and j’s
(A§; = t§ — t5) and oy ; is a non-negative model parameter
associated with edge ;7 — 4. If the directed edge j — ¢
exists, «;; is positive, otherwise a;; = 0. Therefore, the
values of parameters determine the structure of the diffusion
network, as well as the strength of each edge.

The form of the transmission likelihood is normally cho-
sen from exponential distribution, power law distribution or
Rayleigh distribution. In this paper, we select the Rayleigh
distribution as the likelihood function for the purpose of
demonstration and analysis, because it is shown to be the
best among the three forms in most cases [4}/6,[19]. How-
ever, the proposed frameworks can naturally be extended to
other function forms, since they are essentially independent
from the choice of the form of transmission likelihood. The
Rayleigh transmission likelihood is defined as follows:

.1
FOENES ) = {
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0 otherwise
Survival function, denoted by S(-), refers to the prob-
ability that a node j does not infect ¢ by time ¢;, given
that the node j gets infected at time ¢;. Thus, we have
S(t,‘|tj; Oéj,i) =1- ftt; f(t‘tj; Oéj,,‘)dt. Hazard fllIlCtiOIl,
denoted by H(-), on the other hand, refers to the instanta-
neous infection rate, which is: H(¢;[t;; ;) = %
With a little calculus, we can show that if the transmission
likelihood takes the form of Rayleigh distribution, the corre-
sponding survival and hazard functions are:
(as )2

S ag) = €m0

H(t[t]; 00) = aji - A

Jst

As aresult, we can compute the likelihood of a particu-
lar cascade t© = (19, t5, ..., t%). First, we name those nodes
of which infection times are before one node as its parents.
We assume that infections of nodes in one cascade are con-
ditionally independent from each other given their own par-

ents. Additionally, we further assume that every node can



only get infected once by the first parent who successfully
infects it. This assumption originates from the principles of
the Independent Cascade model [11]]. Therefore, the condi-
tional likelihood of an infected node ¢ is the summation of
the likelihood of numerous disjoint events (the node is in-
fected by one of its parents yet survives the others):

> f@Elie) 1

{j:t§<tg‘} {k:k#5,t5 <t$}

Li(t%5A) = S(t5|te; ak,i)

where A is the matrix storing all o ;, ak.a. A; ; =
Because of the conditional independence, the likelihood
of all infected nodes in the cascade will be:

(2.2)

L(tA) = S(t{ 1ty ak,q)

I >

{o<t; <T} {j:t§<tg}

F51E5s ag,0)

I1

{k:k#j,ti<t§}

Noticing that f(tﬂt;, ajyi) = S(tﬂt;, Cljyi) . H(tﬂt?; Oéjyi),
we can substitute it in the Eq. 2.2):

II Do H(E |t 50)

{0<t; <T} {j;t§<t§}

L(t5 A) =

I1

€ <€
{k:tf <t§}

S(t51th; ak,i)

Additionally, those uninfected nodes (a.k.a. t{ = o0)
should be considered, since they are informative as well.
Therefore, we need to include more terms, which is the
likelihood that uninfected nodes survive from the influence
of infected nodes by 7. The final likelihood of cascade c is:

2.3)
L(tA) = 11

{0<t; <T} {m:tS, >T}

S(T|t7; ai,m)

I1

4:¢C c
{g:t§<t$}

> HE |t k)

{k:tg <t$}

S(tﬂt;; i)

Moreover, if we consider that each cascade is indepen-
dent from each other, likelihood of all cascades will be:

[z a)

Finally, we learn the parameters (A) by minimizing the
negative log-likelihood of all cascades, which is exactly the
convex optimization problem solved by NetRate [6]]:

— > log {L(t; A)}
a;; >0,4,5=1,2,..,N

minimize
(2.4) A
subject to

3 Description of Proposed Frameworks

3.1 Weighted Topic Cascade (WTC). Weighted Topic
Cascade (WTC) model aims to infer topic-sensitive net-
works by incorporating both user preferences and topic dis-
tributions of cascades to the optimization problem presented
in Eq. (2.4). Due to the nature of topic-sensitive net-
works, we allow the value of parameter «;; associated
with edge 7 — ¢ to change with regard to different top-
ics. Therefore, we use a non-negative vector aj,z-T =

i J ;i indicates
the edge’s strength on the k*" topic. Corresponding to the
Rayleigh function in the Eq. (2.I), WTC employs the fol-

lowing transmission likelihood function:

(oz§.711-)7 al? ...,a(.f)) to replace o ;, where alk)

3.5)
w (wi, ug) - [ ve - Af]
fepsy = 4 P laeud sve (85,7 £ <
0 otherwise

where w(-) is a weighting function, which takes two user
preference vectors as input and generates a non-negative
scalar: w : RE x RE — R. Generally speaking, w(-)
computes the similarity between u; and w;. In other words,
if u; and u; are more similar, w(-) should output a larger
value. Otherwise, w(-) emits a smaller value, which provides
a penalty to the edge connecting node ¢ and j. Moreover, in
order to guarantee Eq. is still a probability, w(-) may
need to include a normalization factor to ensure the transmis-
sion likelihood sums up to 1. We provide users with the flex-
ibility to select the w(+) function to fit various datasets, since
the choice of w(-) might be dataset-dependent. However,
we found that the weighting term in MoNet [19] generally
works well in many cases, comparing to some other simple
functions, such as the dot product of u; and u;. Thus, in
practice, we use the following w(+):

w (ws, uy) =i 77

where u; - uj is the dot product of u; and u;, and Z is
a normalization factor: fm fuj e**¥idujdu; = Z. Later,
we will show that in the parameter learning phase, Z can be
canceled out and thus does not affect estimating each o, ;.

Accordingly, the survival and hazard functions of WTC
are readily to be computed:

&
S(tflt;?)zl—// / F(t[t5)dt dujdu;
u; Juj t;

:1—/ / w(ui,uj)dedui~
ug Juy

t7
/ Qi Ve (t—1t5) - exp [*aj,iT : 3
t

)

c
* Ve Aj,i

=1-z-z*. (1 — exp {—(aj,,')T ve -

=exp {_(ajﬂ-)T Ve - @}

H(E5]t5) =F(E5185)/SENE5) = w (wiy ug) - @js -

Moreover, we need to impose empirical regularizers
on the optimization problem of Eq. (2.4) to ensure the
sparsity of the inferred network by WTC. We choose lasso
regularizers to achieve this. At last, WTC aims to solve the

(t—t5)*

|



Transmission Likelihood

Log Survival Function Hazard Function

f(ti‘t]‘) (t; < ti, f(ti|tj) = 0 otherwise) log S(ti‘t]‘) H(tilt]‘)
Ll (ts—t)2 (t/—t~)2
NetRate O(J')i(ti - tj)e 35, (ti—t;) 7aj,i7fj2 ozj,i(ti - tj)
] 1o (ts—t.)2 (t;—t:) EYVRLTY
MoNet S gt — ty)e” 29401 —aji— T aya(ti = )
. T Lo T we(t;—t:)2 (t,—f,j)2 T
Topic Cascade o Ve (t; —ty)e” 2T Vet —0y,i | ve s ;! - ve - (ti —t)
T
w(wi, uj) - Qg5 - Ve - (b — ty) (t;—t:)2 -
WTC o ) t _J w(ws, wi) - oig' Ve (t; —t;
exp *%aj,i—r"vc'(ti*tj)2 3, c D) (ui, uy) i e (ti )
—
aji - [veoh (us,ug)] - (8 —ty) . (t;—t:)2 N
e exp { S| we o h(ui,ug)] - (1 —tp)?} | O e hlunual T e e oh (s ug) - (6~ )

Table 2: Rayleigh transmission likelihood, log survival functions and hazard functions used by different models

following optimization problem:

minimize  — 3 log {L(t5 A)} + A2, 325 llev,ill2

(3.6) L
aji = 0,4,57=12.,N

subject to

3.2 Preference-enhanced Topic Cascade (PTC). As we
stated before, transforming user preference vectors into a sin-
gle weighting term may lose the rich topic-wise information
contained in the vectors. This might largely affect the perfor-
mance of WTC. To compensate this, Preference-enhanced
Topic Cascade (PTC) uses the following transmission likeli-
hood function:

(3.7)
@i - [veoh (us,uz)] - Af

FsIE5) = P —3o: T ve o h(us, uj)] (A§«i)2) <t
o otherwise

where o denotes the Hadamard product, and h (u;, u;) is
a function of which inputs are user preference vectors, and
the output is a non-negative vector of length K: h : R x
RE — RXE. If two users have large values on the ‘"
element of the preference vectors, we consider they are more
probable to both infect and be infected on the i topic. As
a result, function h tends to output a larger value on the ¥
element as well. Similar to WTC, readers are free to test
different h functions to find the optimal one. In practice, we
found out that simply adopting the Hadamard product of user
preference vectors turns out to be a good choice in terms of
both efficiency and effectiveness:

h(u;,uj) = u;ouy

Likewise, PTC’s survival and hazard functions are:
(A5.)°
2

Afterwards, PTC solves the same formed optimization
problem as WTC attempts to solve in Eq. (3.6). In order
to provide a straightforward comparison, we summarize our
frameworks and previous models in Table[2]

S(ti[t5) =exp <—o¢j,,’—r - [ve o b (us, uj)] -

H(tﬂt;) :aj,iT . [vc o h (u’HuJ)] : A;,l

3.3 Parameter Learning From Table |2} it is obvious to
see that the transmission likelihood, log survival function
and hazard functions of PTC framework have the same form
of Topic Cascade model’s. The only difference is that PTC
replaces v, in Topic Cascade with v.oh (u;, u;). Therefore,
we can adopt the same learning process of Topic Cascade
with simple substitutions to learn the parameters of PTC. For
brevity, we omit the introduction of the parameter learning
for PTC, which can be found in [4]].

Next, we focus on solving the problem in Eq. (3.6) for
WTC framework. Similar to previous models [4}/6,/19], we
discover that the problem in Eq. (3.6) can be factorized into
N subproblems, which can be addressed in parallel. The ith
subproblem only involves the vectors c,;. If £; denotes the
negative log-likelihood terms in Eq. (3.6) that involve av. ;,
the i*" subproblem can be stated as follows:

minimize € ({a,:}),) + A X, letsilla
(3.8) Loy},
subjectto  ay; = 0,5 =1,2,..., N

Because of the group lasso regularizers, the problem in
Eq. (3.8) is non-smooth. However, it is separable with re-
spect to the subscription j in aj,;. Therefore, we adopt the
block coordinate descent framework for non-differentiable
function [[18]] to perform parameter estimation. The algo-
rithm runs in several rounds, and in each round, we iterate j
to sequentially estimate each o ;.

The estimated o ; in the Ith jteration, denoted by
ag’i, minimizes ¢; with respect to o ; with other model
parameters fixed to their current values:

(3.9 o ; = argmind; i (i) + Allv,il|2

g,z
where ¢; ;(a;,4) —q%;_gsall,i, e 0‘;'—1,1'7 g, a;l_i__ll,z’ s agzl)}).
Since Eq. is still non-differentiable, we adopt
proximal gradient algorithm to solve it. First, by applying
WTC’s log survival and hazard functions to Eq. (3.9), we
can compute the gradient of ¢; ;(ca;,;) with regard to o ;:

ol ; . AS 2
Ve, (00 :% - ( ,2,,) v
A {eltg<eg}
(3.10)
w (i, uj) - A?7 * Ve

c ) T o A
{e[t§<=T} S5+ w (us, ug) - ,s " - ve - AS



where SJC is defined as:

c T c
S = E w (Ui, uj) - Ay - Ve - Af i+
k<j,t§ <t¢
1—17 c
E w (s, uy) - Q4 e Ak

k>j,t§ <t¢

Notice that the normalization factor Z of w (u;, u;) disap-
pears in Eq. (3.I0) after taking derivative. This means in
practice, we do not need to actually compute Z for the pa-
rameter learning. This is important to the efficiency of WTC,
since computing Z might be extremely time consuming.

Theoretically, V/; ;(c;,;) needs to be Lipschitz contin-
uous. One can easily prove this by showing that the Hessian
of £; ;(ej,;) is upper bounded by a constant, say L:

%05, (az,5) w (Wi, Uj) - (Af,i)z Ve Ve |
o L coyey |SE Cws) o T cAc ]?
, {eltg<=Tts<t¢} |55 +w(ui, ug) - ayi " v A
<L
_ AU (1—1)
Furthermore, let o} G = Qi — V(e ),

where v is the step size in the gradient descent. 'y can
be either a value in the interval of (0,1/L] or decided by
line search [15]. Due to the convexity of £;;(c;;), o,
is exactly the solution to Eq. (3.9) disregarding the non-
negative constraint (aj,; = 0) and the lasso regularizer. To
obtain the final solution to Eq. (3.9), we adopt the proximal
algorithm, yielding to the following proximal mapping:

1 .
o, = argmin o~ [levi — ;)13 + Alleg,ill2
;20 2
Letproxu.up( ;i) = argmin 5 ||0‘J'L ;,ng—&-)\Hag‘,in,
Xjsi
where || - ||, denotes L-p norm, then the following equation

always holds according to the Moreau decomposition [15]:

pl‘OXH,”p(a;,i) = a;,i — prox ., (a;,i)

where || - || is the dual norm of || - ||,
Notice that prox_(aj ;) is exactly to project o}
a dual norm ball of radius /\ 7, which yields:

5 on

) g lagills <A-
prox; ., (ej,:) = { ol - lagalls > Ay

7% Haj,‘,_ *

By setting p = 2 and recalling that the dual of || -
itself, we can obtain the final solution to Eq. (3.9):

||2 is

(3.11)

l 0
Qi = [*(_Lﬂ
i\~ Tagum )|,

where the notation, [];, denotes a special function: it
sets all negative elements in one vector to be zeros. This
function guarantees that the constraint a;; = 0 is not
violated. At last, we conclude the parameter learning for
WTC framework in Algorithm I}

leagilla < Ay

lefillz > A~

Algorithm 1 Weighted Topic Cascade (WTC)

Input:
Cascade records: t€, Vc
User preferences: u;, Vi
Cascade topic distributions: v., Ve
Maximal iterations: I, gz
Output: o, Vi, j
1: Initialize a? ; forall 4 and j
2: for all i=1 to N do
=0
while (I < oo and o}
l=1+1
forj=1toNandj#ido

5,1‘. according to Eq. ll

; not converges) do

update oc;
end for
end while
. end for
11: Set a

2: return al

—
R AR ARAIE Rl

=0,Vi
Vi, j

—

3y

4 Synthetic Data based Evaluation

In this section, we use experiments based on synthetic data to
provide both qualitative and quantitative evaluation of WTC
and PTC. We compare our approaches with three state-of-
the-art models: NetRate [6], MoNet [[19] and Topic Cas-
cade [4]. Two major reasons of introducing synthetic data
to test the proposed frameworks are as follows: (1) for a real
information network, the true values of the parameters asso-
ciated with each edge are usually not obtainable. Synthetic
network, on the contrary, offers us a more controllable envi-
ronment to quantitatively evaluate the models in details. (2)
When inferring networks by incorporating both user prefer-
ences and the topic distributions of cascades, the experiments
in this section unveils the potential problems of compressing
users’ preferences into simple weighting terms.

4.1 Synthetic Network Generation. We use Kronecker
Graph [13] to generate two synthetic networks. Kronecker
Graph is selected due to that it well captures many important
properties of real networks and therefore mimics a true net-
work well. The first core-periphery network [5]] is generated
by using a 2-node core having parameters [0.9, 0.5; 0.5, 0.3].
The second hierarchical network [3]] is generated by using a
2-node core having parameters [0.9, 0.1; 0.1, 0.9]. The final
obtained two networks contain 512 nodes and 1207 edges,
and 512 nodes and 512 edges, respectively.

The K in the experiments is set to 5, and we do not
observe significant change of the result when K varies.
However, one should notice that this might not be true for
real datasets. For the i'” node, we randomly generate a
normalized vector of length K to be u;. For each edge
J — i, we also randomly generate c;;, of which each
element is drawn from the interval [0, 1).

4.2 Cascade Simulation. In order to initiate a cascade, we
first need to generate its topic distribution. Similar to w;, v
is also randomly generated. Then we randomly pick a node



in the network as the first infected node and set its infection
time to 0. Afterwards, we simulate the diffusion process on
the network as follows: we add the first infected node into a
list storing the frontier of diffusion process. In each iteration,
we remove the node with the earliest infection time from
the list, and mark it has been infected. Then, we allow it
to infect each of its not yet infected neighbors. According
to the distribution defined by the transmission likelihood
on the edge, we first draw the time difference between the
infection moment of the node’s neighbor and itself. The
sum of the time difference and the node’s infection time is
exactly the infection time of its neighbor. If the result is no
larger than the predefined 7', we add this neighbor into the
list and record its infection time. Of course, if one node is
successfully infected by multiple parents, we consider the
earliest infection time as its true infection time. This process
continues until the list is empty and we set the infection time
of all uninfected nodes to co. If the cascade only infects one
node in the network, we simply discard this cascade. We
select Eq. as the transmission likelihood function to
generate cascades due to that comparing to other models’
transmission likelihood functions, it best fits real datasets
(we will show this in Section 4).

4.3 Experimental Results. We generate sets of cascades
and feed different algorithms with the infection times of
nodes. We also provide the generated user preferences and
the topic distributions of cascades, if the algorithm requires
them. Readers should notice that this is an ideal scenario
that the true value of each u; and v.. is known. However, for
real datasets, u; and v, need to be approximated by methods
such as LDA [2]], and we might need to tune the value of
K to get the best performance. In order to conduct a fair
comparison, we set the convergence condition and maximal
allowed iterations to be the same for different models.

We first examine the performance of different models
to uncover the structures of diffusion networks, which re-
flects the quality of inferred edges. Based on the estimated
results, if there exists any parameter associated with an edge
is nonzero, we consider the edge inferred by the model. By
comparing inferred edges to the ground truth, we can calcu-
late the precision, recall and F-measure for each model when
using different numbers of simulated cascades. The results
on the core-periphery and hierarchical network are shown in
Fig. In general, because of the structural difference be-
tween the core-periphery and hierarchical network, we need
more cascades to get good results on the core-periphery net-
work. It is easy to observe that PTC outperforms all the other
methods in terms of precision, recall and F-measure.

For the generated core-periphery network, Topic Cas-
cade and PTC model can achieve good precision values even
with fewer number of cascades. However, PTC performs
better as the number of cascades increases. The other three
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Figure 2: Performance on Synthetical Data

models, on the other hand, need more cascades to reach their
stable points. Roughly speaking, the recall values of all mod-
els monotonically increase along with the increase of the
number of cascades. This outcome is straightforward, since
if we generate more cascades, more edges will be included
during the message dissemination process, which provides
us the chance to unveil more unknown edges in the net-
work. Comparing the performance of MoNet to NetRate’s,
we can clearly see the benefit of incorporating user prefer-
ences. However, this might not be true for a topic modulated
model: WTC framework does not significantly outperforms
Topic Cascade. What’s worse, as suggested in the core-
periphery network, the precision of WTC might be much
worse than Topic Cascade when we do not observe many
cascades. This indicates the potential problem of adopting
WTC to infer networks with certain structures and fewer cas-
cades. As mentioned previously, a potential explanation to
this phenomena is that after WTC transforms user preference
vectors into weighting scalars, the original topic-modulated
information in the vectors might not be properly preserved.
PTC framework, on the other hand, can avoid this since the
h(-) function still has a topic-modulated output, which can
be directly combined with the topic distributions of cascades.

Next, we conduct a more quantitive evaluation of dif-
ferent models: computing the errors of estimated parameter
values with respect to the ground truth. In this experiment,
we only compare the results generated by PTC, WTC and
Topic Cascade model, since they differentiate the parame-
ter values on various topics, which is exactly the scenario of
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Figure 3: Mean Absolute Errors (MAEs) on Synthetical Data

the generated ground truth. Therefore, if we denote an esti-
mated parameter by @5? and the ground truth by agﬁ)*

can compute the Mean Absolute Error (MAE) as:

3%, Ta(@y) —af)
N-N-K
Fig. [3] displays the MAEs of three models on the two
generated networks. Having in mind that the true parameter
values are in the interval of [0, 1), the results of Fig.
demonstrate that PTC is more stable comparing to the other
two models and its MAE is much smaller.

, we

MAE =

5 Real Data based Evaluation

This section introduces the experiments based on two pub-
lic datasets to evaluate the proposed frameworks: a Meme-
Tracker datasetE] [4.[7,/12]] and a Sina Weibo datasetE] [21].

5.1 MemeTracker Data. The MemeTracker dataset
records the times when different blog and news websites
post “memes”. A “meme” refers to a textual message (such
as a short phrase or a long statement) that spreads widely
in the network and is viewed as the cascade. Different
websites are viewed as nodes in the network, because they
can actively generate or repost memes. However, edges
among them are not directly observable. Similar to [4}/7], we
use the hyperlinks mentioned together with memes to reveal
the information source of a website, since they point to
related articles. Through this, we can formulate a hyperlink
network among nodes and view it as the ground truth.
Based on the raw MemeTracker data, we first extract
the 1,000 most active websites in the January of 2009 (a.k.a.
websites that posted most memes). We record all their
posted memes in that month, along with their infection
times. If a website posted a meme more than once, we
use the earliest time as the infection time. Afterwards, the
observation window (7') for all cascades is set to 1 week,
and we remove all the memes that do not have enough time
to be observed. We also remove websites’ memes that do
not contain the information sources, since we do not have
the corresponding diffusion edges to evaluate them. Finally,

2http://snap.stamford.edu/data/memetracker9.html

3http://arnetminer.org/Influencelocality#b2352

the obtained dataset consists of 1,000 nodes, 4,323 edges and
2,762 cascades. Moreover, to obtain the topic distributions
of cascades, we apply J GibbLD a java implemented LDA
model based on Gibbs sampling [9,10], to the textual content
of memes. We also gather the textual content of a node’s all
posted memes and use JGibbLDA to extract its preference.

5.2 Sina Weibo Data. Sina Weibo is a micro blogging
website that is widely used in China, which is similar to the
Twitter network. The users in the network are deemed as
nodes and connected to each other through “follow” relation-
ship, which allows a user to see the tweets posted by the peo-
ple s/he has followed and further responds to it. Therefore,
“follower-followee” relationships in the Sina Weibo form an
information network that facilitates the spread of contagions,
a.k.a. tweets. Similar to the MemeTracker dataset, we first
find the 1,000 most active users in the August of 2012, which
are the users who posted most tweets. We also retrieve all
their posted tweets and times to be used as cascades. T’ is
also set to 1 week in this case. Moreover, the “follower-
followee” network of users is also retrievable from the origi-
nal dataset. Likewise, a user’s preference vector and the topic
distribution of a cascade are also obtained by applying JGib-
bLDA to the textual content of a user’s all posted tweets and
the specific tweet, respectively. At last, we obtain a dataset
containing 1,000 nodes, 2,686 edges and 2,281 cascades.

5.3 Experimental Results. Since the ground truths of the
two real datasets only contain network structures, we are
only able to evaluate the precision, recall and F-measure of
inferred edges. By tuning the value of K, we present the
comparison of different models in Fig. @ Since NetRate
does not incorporate topic related information, it is simply
a horizontal line in Fig. E} Moreover, each reported result
is the best performance of the corresponding model under
different choices of A (A = {0.05,0.1,0.2,0.4,0.8}).

In general, we found out that it is much harder to infer
the MemeTracker network, probably because of that it has
more edges and a more complex structure. In terms of
the F-measure, different algorithms can reach their optimal
values when K = 3 or K = 4, and it is clear to see that
PTC framework constantly outperforms the other models.
Although in most cases, WTC framework prevails over
the previous methods, it seems that WTC is less stable
comparing to PTC: in the Sina Weibo dataset, WTC is even
worse than Topic Cascade when K = 2 and K = 3. We can
also observe that the recall values of different models cease
to increase or only increase marginally when K reaches a
certain threshold. Meanwhile, the number of false positive
edges grows, which largely hurts the precision. In practice,
K can be decided by techniques like cross-validation.

“http://jgibblda.sourceforge.net/
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Figure 4: Performance on Real Data

6 Conclusion

Uncovering a hidden diffusion network from the traces of
disseminated messages is a problem that has been exten-
sively studied in recent years. Motivated by the discovery
that topic related information often helps the network infer-
ence, previous work has incorporated either the user pref-
erences over topics or the topic distributions of cascades.
This paper explores methods to incorporate both of these
two types of information for better inferring diffusion net-
works. To achieve this, we propose two principled frame-
works: Weighted Topic Cascade (WTC) and Preference-
enhanced Topic Cascade (PTC). The proposed frameworks
formulate the network inference task as non-smooth convex
optimization problems and adopt coordinate gradient descent
with proximal algorithm to solve them. Based on substantial
experiments on both synthetic and real datasets, we demon-
strate that methods such as WTC, which compress user pref-
erences into additional weighting terms, may potentially lose
the rich topic modulated information that contained in the
preference vectors. PTC, on the other hand, is more stable
and constantly outperforms WTC and several state-of-the-art
algorithms on both synthetic and real datasets.
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