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Abstract

Combining predictions from multiple sources or models
has been shown to be a useful technique in data min-
ing. For example, in network anomaly detection, multi-
ple detectors’ output have to be combined to obtain the
diagnostic decisions. Unfortunately, as data are gener-
ated at an increasingly high speed, existing prediction
aggregation methods are facing new challenges. First,
the high velocity and hugh volume of the data render
existing batch mode prediction aggregation algorithms
infeasible. Second, due to the heterogeneity, predic-
tions from multiple models or data sources might not
be perfectly synchronized, leading to abundant miss-
ing values in the prediction stream. We propose On-
lineCM, short for Online Consensus Maximization, to
address the above challenges. OnlineCM keeps only a
minimal yet sufficient footprint for both consensus pre-
diction and missing value imputation over the predic-
tion stream. In particular, we show that the correla-
tions among base models or data sources are sufficient
for effective consensus prediction, require small stor-
age and can be updated in an online fashion. Further,
we identify a reinforcing relationship between missing
value imputation and the consensus predictions, lead-
ing to a novel consensus-based missing values imputa-
tion method, which in turn makes model correlation
estimation more accurate. Experiments demonstrates
that OnlineCM achieves aggregated predictions that has
close performance to the batch mode consensus maxi-
mization algorithm, and outperforms baseline methods
significantly in 4 large real world datasets.

1 Introduction

Ensemble methods for combining the knowledge of mul-
tiple data sources and models is fundamental in the era
of big data. An important research subject in ensemble
learning is on how to aggregate the output of multi-
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ple models to achieve better performance. First, it is
not uncommon to have multiple data sources available
for data mining tasks. The richness of data sources can
greatly improve the predictive performance in the tasks.
For example, when modeling cellphone users’ behaviors
for advertising or recommendation, one can utilize and
aggregate data sources such as text messages and im-
ages, communication networks, location information ob-
tained from GPS, etc. Multiple models can be trained
on different data sources and provide complementary
perspectives of the data, leading to more robust and ac-
curate predictions. Second, crowdsourcing has emerged
as an important information collecting paradigm, where
human workers are hired to provide labels of a large
amount of data in an much affordable way. Since hu-
man annotations can be subjective and noisy, principled
ways of annotation aggregation have to be carefully de-
signed to fully utilize the wisdom of the crowd. There
has been a great number of existing work on the top-
ics [14, 13, 19, 20, 1, 22, 29, 30]. For example, in [14],
they proposed consensus maximization to aggregate the
predictions from supervised and unsupervised models
using a bipartite graph. In [20], they proposed to use
non-negative matrix factorization to aggregate the out-
put of multiple clustering models. In [29], the authors
proposed a Bayesian hierarchical model for prediction
aggregation.

However, these existing methods fail to address
two challenges. First, there are situations where the
predictions need to be combined in real time. For
example, in online advertisement, a user’s profiles,
such as age, need to be predicted in real time to
deliver certain relevant ads. The predictions of age
can come from multiple models or data sources, and
we wish to combine these predictions in real time.
Most of the existing methods work in the batch mode,
and they need to access predictions of all instances
from all base models. The only exception is the
approach proposed in [13], where the authors extended
the consensus maximization algorithm [14] to the online
learning setting. However, their update rules fail to
fully capture and utilize the model correlations for more
accurate prediction aggregation. Second, with more
data sources, it is not uncommon to have data that
only present in some sources but are missing in other



sources. Predictions from individual data sources are
therefore tend to have missing values too. Also, since
the velocity of the data stream can be so high that some
of the base models have to skip some data example
to keep up with velocity of the data, and this also
introduces missing values. Nonetheless, due to the time
constraint, one can not wait for the data or model to
be ready to provide the current missing predictions,
but have to aggregate the current predictions that are
available without synchronization. In sum, base model
predictions have to be aggregated with missing values
in an online fashion.

In this paper, we propose an algorithm to solve
the above two challenges effectively and efficiently.
Regarding online prediction aggregation, we analyze the
batch mode consensus maximization [14] algorithm and
show that the information needed for aggregation is the
covariance matrix of the classes/clusters from different
base models. Relying on this covariance matrix has
two advantages. First, this matrix can be updated
online, and updating the matrix when seeing base
model predictions for a new instance amounts to cheap
bookkeeping operations. Second, we prove that up to
any point, this covariance matrix can be updated such
that no information is lost comparing to the batch mode
consensus maximization that sees the same set of base
model predictions. This proves the optimality of the
proposed online algorithm in terms of what a batch
mode algorithm can achieve.

Although there have been many works on handling
missing value, we need to exploit the special structure
of the problem studied here. We propose a missing
value imputation model that exploits the dependency
among base model predictions. In particular, missing
predictions from one model are treated as responses
while the non-missing predictions from the remaining
models serve as variates. A regression model can be
built from available complete base model predictions to
capture the dependency, and missing values are imputed
using the predictions of the regression model. More
importantly, the regression model can be chosen to be
an online algorithm that can be updated incrementally
while maintains an accurate estimation of the prediction
dependency. The contribution of the paper are as
follows:

e We identify the challenges of online consensus
aggregation of the predictions from multiple models
or data sources, which finds its applications in
online advertisement and recommendation, among
others.

e We propose an online aggregation model to opti-
mally capture the information that the batch mode
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Figure 1: Bipartite Graph Representation

Table 1: Notations

Definition
indicator of object 7 in group j
probability of object ¢ w.r.t. class j
probability of group 7 w.r.t. class j
indicator of object i predicted as class j

Symbol
Anxv = lagj]
Unxe = [uij]
QUXC = [(Iij]
Yoxe = [Yij]

version can upto any time. Missing values are han-
dled by another online learning component that’s
able to exploit the dependency among base models.

e Experimental results on several big datasets vali-
date the proposed algorithm is . memory and time
efficient, and effective in accuracy.

2 Consensus-based prediction combination

The goal of consensus-based prediction combination is
to reach a maximal consensus among multiple models
using the predictions from multiple base models [14].
Supposed there are m base models, in which r mod-
els are classifiers and m — r are clustering models, each
model will give a label (or group ID) for each data exam-
ple in the data set. Assume that the number of classes
is ¢, m models will give m predictions partition the
data set into mc groups, in which rc groups are classes
produced by supervised models, and (m — r)c groups
are clusters got from unsupervised models. Therefore,
n data objects in the data set and mc group nodes
can form a bipartite graph. Figure 1 shows the bipar-
tite graph representation of consensus-based prediction
combination. We denote the connections in the bipar-
tite graph representation by a series of matrices. Table
1 gives the detailed notations.

Suppose the total number of groups is v = me, we
use a matrix A,x, to denote the relationship between
data objects and groups. We set a;; = 1 if object ¢ is
classified or clustered into group j by a model, 0 oth-



erwise. We use another matrix U, «. to represent class
assignments given by the model combination method.
Similarly, @,. denotes the class memberships of the v
group nodes. Y, x. denotes the corresponding relations
among groups and classes, where y;; = 1 if the -th
group node belongs to class j and 0 otherwise.

Then we formulate the consensus-based combi-
nation problem by an objective function (Let k; =

Zi yiz):

n v v
min SO ailui — gl + > Ejllgg — i ll?
' i=1j=1 J=1
S.t. uzZO, |U,i_|:1, i:l,...,n

¢. >0, lgi|=1, j=1,...,v

Note that in Eq.(2.1), the first term ensures the con-
straint that objects and groups which are connected in
the graph are possible to have close labels. And the
second term imposes the constraint that the group la-
bel estimate should not deviate much from its initial
class label prediction. This optimization problem [14]
can be solved using block coordinate descent methods,
iteratively updating matrix U and @ until U converges.

3 Online Consensus Maximization

Consensus maximization classification is very when
combining data from multiple sources using multiple
base models. Nowadays, web technology allows every
people to be a ”sensor” in social network, therefore, the
sources providing information are heterogeneous and
there come different kinds of models to deal with data
in different categories. If we want to give a specific user
a label on his or her interest based on the profile, we
may need to combine all contents in the profile together
to give the label. For example, the textual blogs, photos
and web links should be treated differently in different
models. Another example is an application in network
security. Hackers will always change their behaviors, so
that it is hard to build a single model to detect an at-
tack effectively. In contrast, what we should do is to
build multiple models with respect to different major
features, and combine the results together to decide if
an action is an attack.

In both the applications above, it is obvious that
the task cannot be done after all data are received.
Social behaviors and network actions will form end-
less data streams, and immediate response is required
at each arrival of new data. Because prediction on
social network should be real-time, or the advertise-
ment /recommendation will lose its value, and it is more
important to keep the network safe from any possible
attack every second. Online consensus maximization is
a valuable problem, which can provide a great improve-

ment to a wide range of applications similar to the two
examples.

More formally, suppose we have a data stream,
denoted by S. Each instance in S contains the output
labels from r classification models and (m—r) clustering
algorithms on a dataset X. The task of online consensus
maximization is, give a predictive label to each arriving
data example, based on the m labels produced by base
models, and the information maintained by the model
retrieved from previous data examples. Figure 2 shows
the process of online consensus maximization, different
from the traditional consensus maximization.

In traditional consensus maximization model, base
models collect raw data and produce labels as the input
to CM model. Then CM model iteratively computes
the maximized consensus labels as the final predictions.
Information flows are shown by arrows. However, things
change in the data stream case. The raw data cannot
be collected in advance, instead, there is a data stream
which need to be keep track with in real time. Base
models may not be synchronized well, as the dash
arrow describes, some models will give late response.
Furthermore, OnlineCM model will keep updating when
new data objects come into it.
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Figure 2: Comparison between Traditional and Online
Consensus Maximization

4 Algorithm
Consensus maximization essentially iterates between

the following two equations until it converges.

41) QW= (D, +aK,) Y (AU £ aK,Y)

(4.2) U = D-tAQW

The iterative nature of CM has the following drawbacks
in an online learning setting:



e The input to CM, namely, A needs to be known
before running the algorithm. This assumption is
not true in an online setting, where the predictions
of instances keep streaming in and A is not a
constant, the above equations are not no longer
applicable.

e The size of memory necessary to run the algorithm
grows with the size of input. This is undesirable
in an online setting, where the size of input can be
unbounded.

e Multiple scans of the data is needed to produce the
output, while in an online setting, predictions are
usually produced in real-time.

In the following sections, we describe an online predic-
tion aggregation algorithm to handle the above chal-
lenges.

4.1 Online Fast Prediction The key to transform
the iterative batch CM into an any-time online algo-
rithm, we re-formulate the iterative update equations
as closed form solutions, which enable online computing
without keeping all input.

First we give some useful notations:

e D,: D, is diagonal with the j-th diagonal elements
being Y"1 | a;;, as we add one more row to A, D,
is updated by Y1 | a;j + an+1,5-

e Dy: Dy = (D, + aK,) 'D,, therefore, once we
updated D,,, Dy can be easily derived from D,,.

e Di_: D\ = (D, + aK,) "} (aK,), which is
similar to D).

e S =D 'A'D;1A: since we know how to update
D, we just need to update A’D,1A. The new ij-
th entry of A’D; A is given by - ZZI% iRk =
1 n . . . .

m (Zk:l Qikk; + az,vl+1an+1,])-

As what has been done in [14], plugging Eq.(4.2) into
Eq.(4.1) gives

.3 = (D, +aK,)” = 4+ ak,

4.3) QY = (D K,)YWA'D;YAQY Y + oK, Y
As t — 00, Q) converges to

(4.4) Q" = (I —D\S)™'D;_,Y

where S = D 'A'D;'A, which can be seen as a
similarity matrix for group nodes. Different from [14]
that uses another closed form formula to obtain the

consensus predictions U, we can compute U using
Eq.(4.2), with @ being replaced with @Q*. Specifically,
(4.5) U=D,'AQ* = iAQ*
m

Eq.(4.4) and Eq.(4.5) fulfill the goals we discussed in
Section 4. First, the space requirement is kept minimal.
Only the matrix S needs to be maintained and its size is
of O(m?c?), which has nothing to do with the size of the
data. Second, consensus predictions can be produced
online, without waiting for all consensus predictions to

be ready. In Eq.(4.5), given Q* captures all necessary
information, prediction of the last instance is given by

1 — .
(4.6) Untl, = — Z;CMHJQJ‘-
]:

Lastly and most importantly, the model can be updated
as predictions for instances arrive one by one. To see
this, we list the variables that need to be updated when
the predictions of a new instance come in. After we
update D,,, Dy, Di_» and S, it is straightforward to
obtain the consensus prediction for the current instance
using Eq.(4.5). One might have noted that the model
training is decoupled from consensus prediction, while
the methods in [14, 13] couple the training and predic-
tion phases.

4.2 Missing Values Imputation The above de-
scribed algorithm assumes that there is no missing val-
ues in base model predictions, and the matrix A and
S can be updated with full information. However, as
we pointed out, base models can be out of synchroniza-
tion, or data from some of the sources can be missing,
leading to missing values in the matrix A. In the ex-
periments, we show that such missing predictions can
greatly affect the performance of the above-mentioned
online algorithm. Therefore we need to handle the miss-
ing predictions, and imputation is a effective way for
such purpose. For example, a missing value in the fea-
ture vector can be replaced with the mean or median of
the values of that feature in the observed data. More
complicated imputation methods, such as model-based
imputation have also been proposed and shown to be
powerful. The challenge here is that such imputation
should not impose significant overhead in running time
and space, and should be able to work in the streaming
environment.

Here we adopt a regression based approach to han-
dle the missing predictions. For simplicity, we assume
that there is at most one model will miss its prediction
for any instance. We also assume that there are suf-
ficient amount of instances that all models are able to



give their predictions (called “full predictions”). The
approach learns the dependency between the missing
and non-missing predictions from full predictions, and
the dependency is used to impute the missing predic-
tion given the non-missing ones for the same instance.
More formally, given a set of full predictions from m
base models, m regression models can be trained, with
the k-th model taking the k-th entry in the prediction
vector as response, and the remaining entries as vari-
ates/features. Then given that an incomplete prediction
vector with the k-th entry missing, the missing entry
can be imputed using the k-th regression model. This
schema is shown in Figure 3. In our experiments, we use
softmax regression, which is a generalization of logistic
regression to multi-class problems.

base models prediction label

F—-

Obiject i [ 1 2 2 2

train

Softmax
Regression

|
v
?

Object j [ 1 4
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predict

Figure 3: Softmax regression imputation model

imputation

5 Experiments

We evaluate our proposed model from two perspectives.
First, we compare the prediction performance of the
proposed online consensus maximization algorithm with
that of two baselines, namaly, the batch mode and in-
cremental consensus maximization. Second, we provide
a sensitivity analysis of the proposed algorithm. Specif-
ically, we vary the percentage of of missing values in the
base models’ predictions and show how proposed soft-
max regression based imputation method can handle
missing values in data stream effectively and efficiently.

5.1 Data Sets Table 2 gives the statistics of the four
datasets employed for evaluation. For each dataset, two
supervised models and 2 unsupervised models serve as
base models, each of which predicts a label or cluster
id for each testing example. These predictions of base
models serve as the input to the proposed algorithm and
the baselines.

5.2 Baselines BGCM][14]: on the one hand, BGCM
is only applicable in batch mode, which requires the
availability of all base models’ predictions. On the

Table 2: Data Sets Description

Data Set | # of training # test # classes | # features
revl 15564 518571 53 47236
mnist 60000 10000 10 778

SensIT 25010 1000000 10 10

covtype 20000 561012 7 54

other hand, although BGCM can still give reasonable
aggregation of base models in the presence of missing
values, it does not specify a principled way to impute
missing values. Since the batch mode method has
access to all available information, its performance is
expected to be the upper bound of any online variations
of BGCM. By comparing with BGCM, we can see how
far away the performance of the proposed method is
from the batch mode.

IncrementalCM][13]: this method is an extension
of BGCM for prediction aggregation in an incremental
manner, though its update rules are quite different from
those we proposed in this paper. Briefly speaking, given
the base models’ predictions of the current instance,
say X,, its posterior class distribution, denoted by u,,
is first obtained by averaging the class distributions of
the group nodes that this instance connects to. Then
u, is used to update the class distributions of grounp
nodes as in BGCM. Lastly, all previous instances’
posterior class distributions are updated. In a streaming
environment, the updates in the last step is infeasible
and we simply ignore these updates. By comparing with
IncrementalCM, we show that the proposed method’s
online update rule is more appropriate in capturing
model correlation. Note that IncrementalCM does not
specify how to handle missing values either.

5.3 Online Consensus Maximization on Com-
plete Datasets Table 3 shows the accuracy of the ag-
gregation predictions based on the proposed method
and the baselines. The accuracy is computed over all in-
stances’ aggregated predictions. From the table, we can
observed that the proposed method significantly out-
performs IncrementalCM overall all datasets. For ex-
ample, the improvement is over 6% on the rcvl dataset,
and 6.5% on the covtype dataset. Another interesting
observation is that even the proposed algorithm works
in an online fashion, it does suffer too much from the
unavailability of the full set of predictions, and the On-
lineCM’s performance is quite close to the upper bound
of performance given by BGCM.

5.4 Sensitivity to Missing Rate In big data ap-
plications, sometimes the prediction speed of some base
models may not be able to keep up with the speed in
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Figure 4: Sensitivity of the proposed algorithm to missing predictions

Table 3: Classification Accuracy

Methods rcvl mnist SensIT | covtype
BGCM 0.8954 0.9187 0.8843 0.8901
OnlineCM 0.8772 | 0.8822 | 0.8692 | 0.8758
IncrementalCM | 0.8240 0.8415 0.8375 0.8176

which data is generated. Therefore, some base models
may choose to skip part of the data when there is a
lag, leading to missing values in the stream of predic-
tions. Such absence of predictions poses a challenge for
almost all predictions combination methods. We create
predictions with missing values to study the sensitivity
of OnlineCM without missing value imputation. Two
parameters control how much base models will miss pre-
dictions. The first parameter is the ratio of instances
that will contain missing values. We vary this parame-
ter from 0 to 60%, that is, from “no missing value” to
60% percent of the instances will contain missing predic-
tions. The second parameter is how many models will
miss their predictions for an instance. Since we have 4
base models, we let this parameter take values from 1,
2 and 3. The sensitivity of the proposed algorithm to
different levels of missing value is shown in Figures 4(a)
to 4(d). As expected, the more instances that contain
missing predictions, or the more base models miss their
predictions, the accuracy of the aggregated predictions
degrades severely, and therefore a principled treatment
of the missing values is needed.

5.5 Effectiveness of missing value imputation
In this part, we will show the effectiveness of our pro-
posed algorithm on solving the missing value problem.
We vary the percentage of instances that contain miss-
ing predictions from 0 to 60%, but only on base mod-
els is randomly picked from the 4 base models to have
a missing prediction for each instance that is sampled
to have missing predictions. Figure 5 compares the
accuracy of the proposed approach with and without
missing value imputation. We can see that the soft-
max regression based method can significantly mitigate

the damages caused by missing predictions, espectially
when the number of instances that have missing predic-
tions is high. For example, in Figure 5(d), when there
are 60% of instances containing missing predictions, the
proposed imputation method can save about 10% in ac-
curacy. The explanation of such improvement is that,
as the regression model sees more and more base mod-
els’ predictions, the relationship between models can be
learned more and more accurately. Therefore, the miss-
ing predictions can be accurately predicted using the
regression model based on past predictions. From the
curves above, we can get the knowledge of that, with
the increase of missing rate, the classification accuracy
decreases a lot in traditional method where no impu-
tation is applied. Our approach enhances the accuracy
under the same level of missing rate, and slows down the
decrease in accuracy to a certain extent, which makes
consensus maximization model more applicable in real
world complex scenarios.

With the same imputation method when missing
values exist, it is straightforward to see IncrementalCM
cannot have a better performance than OnlineCM, since
it has an even lower accuracy on complete data sets.

6 Related Works

Ensemble methods [3, 9] have been an important and
powerful family in machine learning and data mining.
Classical ensemble methods focus on training an en-
semble of models to improve classification or cluster-
ing performance over single base models. For exam-
ple, bagging [4] uses bootstrap subsample of the origi-
nal training data to training multiple diverse base clas-
sifiers, such as decision trees [6] to improve classifica-
tion accuracy. Boosting [5] is another popular ensemble
training method, where weak classifiers are trained in
a sequential manner and the current classifier depends
on previous model to focus on difficult instances in the
data. The improvement of boosting can be explained
using bias-variance reduction [5] or large margin learn-
ing [25]. For an overview of ensemble methods, please
refer to the excellent textbooks [34, 16].
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Figure 5: Imputation Effectiveness on 4 data sets

Model combination methods focus on combining
the output of base models to arrive at consolidated
predictions, without access to the data or models.
Roughly speaking, these methods can be categorized
into the following three families based on the techniques
they use.

Matrix factorization In [19, 20], the authors
proposed to treat the predictions of base models as
a matrix, which is then factorized using symmetric
non-negative matrix factorization. The resulting factor
matrix is used as clustering indicators to group the
instances into clusters. In [33], the authors proposed
to use robust matrix completion to aggregate multiple
clustering results. These methods focus on combining
unsupervised models,

Probabilistic approaches These methods treat
the prediction matrix as observed data, while model
the instance memberships as latent variables. In [22],
they proposed a probabilistic embedding method to
combine multiple supervised and unsupervised models.
In [29], they proposed an LDA-like Bayesian hierarchi-
cal model to model the latent variables. In [2], they ex-
tended [29] to transfer learning setting, and in [1] to non-
transductive setting. In [30], a nonparametric Bayesian
method is proposed to infer the number of clusters au-
tomatically from the predictions. Usually, these proba-
bilistic approaches require more computational time on
sampling or variational inference.

Graph based approaches These methods models
the relationships between instances using graphs, from
which aggregated predictions can be inferred. The pi-
oneering work [27] introduced three graph based algo-
rithms to aggregate base model predictions. For exam-
ple, HGPA in [27] constructs a hypergraph consisting of
membership indicators from clustering models as hyper-
edges, then a hypergraph partition algorithm partitions
the hypergraph. Another method in [27], MCLA, par-
titions the hypergraph into k subgraphs, each of which
consists of membership indicators from clustering mod-
els. In [14], they proposed BGCM to infer instance
memberships from a bipartite graph constructed from

base model predictions. In [11], they build a similar bi-
partite graph, which is partitioned using spectral clus-
tering [24] or METIS [17].

Recent development of model combination
In [31], they proposed to jointly learn the weights of the
base models and infer the ground truths in an iterative
way. The idea is that the base model weights and
ground truths can help each other, leading to better
results. In [32] they studied the overfitting problem
in model combination, and proposed a regularization
framework to handle the issue.

Missing values arise in practical applications. For
example, people might choose to ignore some questions
in a survey; in medicine, a patient may not have the
results of certain examinations. How to deal with
missing values to improve the performance of data
analysis models has long been studied and imputation
is one popular method [15]. A simple missing value
imputation approach is to fill up the missing values of a
feature using the median or mean of that feature. The
short coming of this approach is that different instances
should have different values even for the same feature.
Model-based missing value imputation [26] considers
such dependency of the missing values on the instances.
Models are built to capture the relationships between
features, and missing values are predicted using the non-
missing values of the same instance. Recently, matrix
or tensor completion are employed to fill up the missing
values in matrices or tensors [23, 21].

Learning from data streams is highly desirable for
application dealing with big data [10], and there are
several tasks in learning from streams. Online learning
usually refers to learning a classifier in an incremental
way [7]. Online clustering assigns cluster ids to instances
that coming in a stream, while the underlying clustering
model is updated using the current instance [8]. Han-
dling non-stationary distribution in the data streams is
an important research problem [28, 12, 18].



7 Conclusion

In this paper, we present an online consensus maxi-
mization method for classification problem with miss-
ing data, one of the ensemble classification methods
which can improve accuracy and robustness over a sin-
gle model in data streams. It gives predictions based
on the labels generated by a series of basic models,
supervised and unsupervised, gains good performance
without access to raw data.This is the first work try-
ing to build a consensus ensemble classification model
in data streams, considering the possible missing val-
ues as well. Based on our experimental results, we find
our proposed method can improve the accuracy signif-
icantly, and compete over the baselines. On the one
hand, OnlineCM solves the problem that traditional
consensus maximization (BGCM) cannot work in data
streams, which is the advantage in efficiency. On the
other hand, OnlineCM beats the IncrementalCM in ef-
fectiveness. Furthermore, it provides a solution to pos-
sible missing values in real world application. The main
contributions are practical and important in the era of
big data.

Some future extensions are possible. One option
is to combine multiple related data stream to improve
both of their prediction, which is also referred as transfer
learning. The other interesting issue is how to use
the “late” labels of some basic models to improve
the previous “temporary” prediction result, which may
improve the present result even better.
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