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Abstract

Characterizations of crowd expertise is vital to online
applications where the crowd plays a central role, such
as StackFExchange for question-answering and LinkedIn
as a workforce market. With accurately estimated
worker expertise, new jobs can be assigned to the right
workers more effectively and efficiently. Most existing
methods solely rely on the sparse worker-job interac-
tions, leading to poorly estimated expertise that does
not generalize well to a large amount of unseen jobs.
Though transfer learning can utilize external domains to
mitigate the sparsity, the auxiliary domains can them-
selves suffer from incomplete information, leading to
inferior performance. There is a lack of principled
framework to handle the sparse and incomplete data
to achieve better expertise modeling. Based on multi-
task learning, we propose a framework that uses the
knowledge learned from one domain to gradually re-
solve the data sparsity or incompleteness problem in
the other alternatively. Experimental results on several
question-answering datasets demonstrate the effective-
ness and convergence of the iterative framework.

1 Introduction

Workforce and crowdsourcing markets have been serv-
ing as the hubs of human resources and transforming
the way that workforce are evaluated, sourced and con-
sumed. For example, LinkedIn connects millions of its
members to jobs such that qualified workers and jobs
become more accessible; crowd of workers on StackEx-
change can answer millions of questions (seen as jobs
here) ranging from programming languages to cooking.

One common and imperative piece of information
of these markets is the worker expertise, which helps
matching competent workers to suitable jobs. Given
the importance of expertise modeling, there has been
a large body of research on the subject. For example,
in [3], the authors employed the Naive Bayes classifier
to predict whether a LinkedIn member has a specific

expertise, using millions of features extracted from
member profiles. In [23, 27, 42, 39], worker expertise is
modeled as latent factors by factorizing the worker-job
interaction matrix. In the question-answer applications,
some works have proposed to incorporate the scores that
workers earned from their answers, using competition-
based ranking models [28, 2, 20], or graph-based models
such as PageRank and HITS [37, 36, 41, 38].

These existing models, however, are less effective
when facing data sparsity. First, graph-based expert
ranking models rely on the “competition graphs” that
encode the who-wins-who relationships, and the graphs
are assumed to be strongly connected (the “Bradley-
Terry-Luce” (BTL) assumption) to deliver consistent
results [26]. This assumption nonetheless hardly holds
in practice due to the sparsity of worker-job interac-
tions, as verified in our experiments. Regression-based
methods [28] make no such assumption and estimate
expertise via modeling the worker-job responses. How-
ever, in practice, most workers have responded to only
a small number of jobs, making robust estimation from
the sparse worker-job interactions challenging. Various
transfer learning algorithms [25, 19, 40] modeled the
worker-job matching problem and addressed data spar-
sity by borrowing knowledge from external domains.
These works assumed that the external domain contains
sufficient information to be helpful to the target domain.
In our problem settings, quite the contrary, the auxiliary
domain can themselves suffer from incomplete informa-
tion that needs to be estimated. Joint modeling of both
the sparse and incomplete data in the two domains can
be a more promising direction in expertise estimation.

We first propose to address the sparsity in worker-
job responses by exploiting inter-worker similarity to
encourage expertise sharing among similar workers:
the estimation of the expertise of a worker shall take
into account of the expertise of his/her neighbors de-
fined by the inter-worker similarity. Multi-task learn-
ing [16, 6, 7, 8, 1, 10] share the same high-level idea.



Here the estimation of the expertise of a worker is con-
sidered as a single task. Previous works assumed that
task similarity is given or can be reliably learned from
the target domain, while the problem setting here chal-
lenges this assumption: the sparsity in the worker-job
responses hinders the reliable estimation of task similar-
ity. Moreover, the incompleteness of the auxiliary data
can impede the transferring of task similarity from the
auxiliary domain to help multi-task learning in the tar-
get domain. As a novel solution, we exploit the special
structures of the worker expertise modeling problem and
use the estimated expertise to impute the missing val-
ues in the auxiliary domain. The imputed auxiliary data
can lead to a more accurate estimation of inter-worker
relationships as task similarity, which can in turn en-
hance worker expertise estimation in the target domain.
These two steps continue alternatively to gradually im-
prove the performance of both the expertise and missing
value estimation problems. The effectiveness and con-
vergence of this iterative procedure are confirmed on
three real-world question-answering datasets.

2 Notations and Preliminaries

We summarize the major notations in Table 1. For the
matrix A, A;. denotes the i-th row of A and A,; the
j-th column of A. Suppose that there are K different
skills and M workers, then the to-be-estimated worker
expertise can be modeled by the K x M matrix B,
where each column is a K-dimension expertise vector
for a worker. A worker can interact with a certain
number of jobs, and the scores that the j-th worker
gained from the interacting jobs are collectively denoted
by an N-dimension column vector Y.;, whose i-th entry
(Y3;) is the score that the worker obtained from the i-th
job. Y;,j =1,..., M comprise the N x M matrix Y.
Note that the worker-job interactions are assumed to be
sparse, and a large number of entries in Y are missing.
The expertise required by the jobs is encoded by the
N x K matrix X, where the row vector X;. € RX is the
expertise required by the i-th job. The M x V matrix
D stores the V-dimension auxiliary worker features,
with each row being the features for the corresponding
worker. We assume that D contains missing values that
need to be estimated.

The above formulation is quite general, covering
several important real-world applications. For example,
at LinkedIn, the required skills of the i-th position is
given by X;.. The j-th member who ever took that
position can be seen as a worker interacting with the job,
and the duration for which the member occupied that
position, or any measurable achievements obtained in
the position can serve the score Y;;. In this paper, X is
assumed to be fixed for two reasons. First, in real-world

Table 1: Notations

Symbol Meaning
u Set of workers
M number of workers
T Set of tasks
N number of tasks
K number of expertise
R Set of worker-job responses
D e RMXV User feature matrix
G e RMXM User correlation matrix
Y € RVXM User-task response matrix
X e RNVXEK Task-expertise matrix
B e REXM Users expertise matrix
|- le Frobenius norm of a matrix
[m] the set {1,...,m}

running systems like LinkedIn, these data are built off-
line and should be stable, since building an interpretable
and useful expertise representation requires expensive
online experiments [3]. Second, simultaneously inferring
both expertise representations and worker expertise, as
has been done in matrix factorization, can introduce
too many parameters and aggravate the sparsity issue,
as we show in the experiments.

2.1 Preliminaries In this section, we first categorize
previous expertise estimation methods into several fam-
ilies, including a regression-based approach, based on
which we propose our framework in the next section.

2.1.1 Latent factor based methods Methods in
this category infer latent representations of workers and
jobs as expertise from job features. For example, the
authors in [23, 27| adopted language models including
bag-of-words, latent Dirichlet allocation (LDA), and
non-negative matrix factorization (NMF) [35] for this
purpose. Topics of jobs can be seen as the required
expertise, and the expertise of a worker is the mixture of
the expertise of the jobs that the worker has interacted
with. The drawback of such methods is that the
relative expertise proficiency, expressed by the scores
in the worker-job interaction data, is ignored, and thus
expertise cannot be accurately estimated.

2.1.2 Competition graph based methods Ap-
proaches in this category first build a graph of work-
ers to encode the who-wins-who relationships. For ex-
ample, in [2, 20, 28], an edge from worker ¢ to j (j
won i) if j answered a question asked by i, or j pro-
vided a better answer than that provided by ¢ under
the same question. Then expertise level can be esti-
mated based on these competition relationships, using
learning to rank [20], Bayesian model TrueSkill [11, 22]
and centrality measures [2]. For example, PageRank
computes the ranks of nodes on the graph as expertise
level, and RankSVM can find expertise to fit the ob-
served competition relationships. Due to data sparsity,



however, a fairly large number of workers have only re-
sponded to a few jobs, and they will not have sufficient
competitions to infer their expertise stably. Further, the
competition graph might not have strongly connected-
ness, which is required to ensure the consistency of the
inferred expertise using the PageRank or other rank-
ing algorithms [26]. We empirically demonstrate these
observations in the experiments.

2.1.3 Hybrid methods Methods in this category
consider both job features and worker-job interaction
scores, where the job features can mitigate the sparsity
in the worker-job interactions. For example, in [36],
the expertise is first inferred as topics from texts and
worker-job interaction scores, then a competition net-
work is built to infer worker expertise level. They did
not address the sparsity issue in the two sources, and the
constructed answerer-asker competition network again
suffers from the sparsity of the worker responses.

2.1.4 Expertise estimation as linear regression
We will based our framework on linear regression to
model worker-job interaction scores while considering
worker relationships inferred from an auxiliary domain.
Given the worker-job interactions and the expertise
associated with the jobs, linear regression has been
proposed to find the worker expertise [28]. Considering
the estimation of the expertise of a single worker. Let
the responses of the worker to IV tasks given by a column
vector y € RV, and the expertise required by the jobs
by X € RVXK then the worker expertise, denoted by
3, can be estimated via £s-regularized linear regression:

1 1
(2.1) min o |ly — XA + 5/\Hﬂ||§-

BERK 2

The estimation of 3 for all workers can be formulated
in a compact way [28]:

1 , 1o
@2 min, Ly xmis s
where B = [B4,...,8)] € REXM_||B||% is the square

of the Frobenius norm of B. A closed-form solution is:

(2.3) B*=(X"X4+ )XY

Regression-based approaches do not assume a
strongly connected competition network that is required
by the competition network based and hybrid methods.
However, the matrix Y is usually sparse, since most
workers only interact with a small number of jobs (see
Figure 1(b) in the experiments). A worker who has in-
sufficient interactions would have poorly estimated ex-
pertise that does not generalize to unseen data in pre-
diction very well.

3 Proposed Framework

Based on the above regression model, we propose an
approach to handle the sparse worker-job interactions
with the help of an auxiliary domain, which is assumed
to be complete. We encode worker similarity using the
auxiliary data (Section 3.1), to guide worker expertise
estimation in the target domain (Section 3.2). We
investigate missing values in the auxiliary data later.

3.1 Construction of inter-worker graphs from
auxiliary data Besides the scores in the worker-job
interaction data Y and job expertise specification X,
workers can leave an extra trail of footprints in the ap-
plications. For example, on LinkedIn, the footprints
include social connections, current and past job ti-
tles, companies/organizations s/he has worked for, etc.
Such data are considered as auxiliary data in addition
to X and Y. These auxiliary data can be of high-
dimensional (millions in [3]) if we wish to use a com-
prehensive set of worker profiles. We adopt dimen-
sion reduction to embed workers in a lower dimensional
space where worker similarity can be estimated more
robustly. Let D € RM™XV be the matrix consisting of
the auxiliary data, with each row being the features
characterizing a worker. We decompose D using SVD:
D = UXW, where U € RM*Y V, « V. The inter-
worker relationships can be represented by the M x M
matrix G = UUT. G';; measures the correlation be-
tween the i-th and j-th workers, where a significant pos-
itive/negative value indicates a strong correlation/anti-
correlation, and a small absolute value indicates a weak
relationship. G can be represented by a graph with M
nodes of workers, and G;; being the weight of the edge

(i,4)-

3.2 Incorporating inter-worker relationships
via graph-based multi-task regression The worker
relationships G can help resolve the sparsity in the tar-
get domain when estimating the worker expertise using
linear regression Eq. (2.2), with a graph-based regular-
ization term enforcing the fusions of worker expertise:

. 1
min -

3.4
( ) BeRK XM 2

|Y — XB||7 + A\Qy(B).
where Q,(B) is the graph-guided fusion term:

(35)  Q(B)= > |GillIB; —sen(Gij)B,lh.

(1,7)€G

Here sgn(z) returns the sign of the scalar x € R, and
G is the graph encoding the inter-worker relationships



defined in Section 3.1. H is an M x |E| matrix:

Gr; ife=(ij)and k=1
(36) Hk,e = —ij if e= (Z,j) and k :j
0 otherwise.

The effect of 2, is to encourage two workers who are
similar based on the auxiliary data to have similar
expertise, and dissimilar workers to have disparate
expertise. The scalar |G;;| decides how much such effect
G,j exerts on the vectors 8, and 3;.

The original worker graph contains O(M?) edges
connecting all worker pairs. Such a dense graph can be
noisy and slow down the optimization algorithm solving
Eq. (3.4). One can set a threshold to cut off the edges
with insignificant absolute edge weights. However, if too
many edges are cut off, the inter-worker relationships
would vanish too much and Eq. (3.4) becomes Eq. (2.2).
According to our experiments, the more edges we keep
(in the range of 15% to 25% of the total edges), the
better the performance. Therefore we keep 25% of
the edges with the largest magnitudes. Note that the
matrix D is assumed to capture all possible information
such that G is a good estimation of the true worker
relationships. We will drop this assumption in Section 4.

3.3 Optimization algorithm The optimization ob-
jective Eq. (3.4) is convex. However, the difficulties
come from the non-smooth and non-separable graph-
guided fusion term, which is a common challenge shared
by many structured sparse models, such as graph-guided
fused lasso and overlapping group lasso [12, 15]. Al-
though interior point method can solve these problems,
more efficient algorithms are proposed to achieve faster
convergence rate and reduce computational complex-
ity [13, 9, 31, 21, 24]. In the most recent work [10], the
authors showed that an ADMM re-formulation of the
optimization problem can estimate the worker exper-
tise in a parallel way. Therefore, the proposed expertise
model can be scaled to large problems. In the experi-
ments, we adopt the method in [6] as our optimization
solver. The dual of the fusion penalty can be written as
(3.7) Qy(B)=|BH|:\ =

max (
AERKXIEL||A]| <1

A, BH).
This dual norm is still non-smooth, and a smooth lower
bound of the dual norm is

(3.8)

fu(B) = max

H 2
= A, BHY — =||A
AQWMMMMHSI{<, )= SlAl%}

where p is the smoothing parameter that controls the
smoothness of f,(B). Therefore, the following function

gives a smooth lower bound of the original objective
function Eq. (3.4):

~ 1
(3.9) F(B) = IV = XBl% + fu(B).

The gradient of f(B) is

(3.10) Vf(B)=X"(XB-Y)+ Vf.B),
where
(3.11) VfuB)=A"H", A*=S(BH/p).

Here S(z) = zifx € [-1, 1] and sgn(x) otherwise. 1 > 0
trades off between the smoothness of f,(B), measured
by the Lipschitz constant of Vf,(B): L, = iHHH%
Let Ly = A (X'X) + M%d’“, where A1(A) is the
maximal eigenvalue of A and dj, = ||G.||3.

Algorithm 1 Accelerated Gradient Descent
Input: X, Y, G, MaxIterNum
Initialization: W° =0
for s = 1 — MaxIterNum do

compute V f(WW*). .
gradient descent: B® = W* — 7=V f(W*).
70 =~ T VW),

T Iu
+1 _ s+1 2
Wi =SB 52
end for
Output B*.

We can borrow the following theorem from [6] for
the convergence of the above optimization algorithms.

THEOREM 1. If we require the objective function at B®
to be € close to the minimum of the objective function,
then O(1/€) iterations are needed.

The significance of the theorem is that the accelerated
gradient descent procedure converges faster than the
subgradient method, which has rate O(1/¢€?).

4 Joint estimations of inter-worker graph and
expertise

Here we assume that the worker profile matrix D is in-
complete. This is usually the case in real world applica-
tions. For example, a LinkedIn member can only input a
small number of important past positions and projects,
and not all the details are recorded; on Stackoverflow,
due to limit time or interests, an expert could have an-
swered more questions than he/she has answered. The
missing information will lead to insufficient workers pro-
files, and in turn the estimated inter-worker relation-
ships also suffer. If one can complete the missing infor-
mation to some extent, we shall have a more accurate



inter-worker relationship matrix G, which can further
lead to a more accurate worker expertise estimations
via the graph-fused linear regression model. What’s
even better, if we can utilize the improved expertise esti-
mations to enhance the missing information completion
procedure, the prediction performance is likely to move
towards a good direction.

We present an iterative algorithm, shown in Algo-
rithm 2, to implement the above idea. Although we as-
sume the special structures of StackExchange dataset,
the main idea applies to a wide range of other situ-
ations, where worker-job predictions can help worker
profile completion. After running Algorithm 1, we have
the worker expertise estimation B to predict the worker
responses to the training jobs. Thus the possibly miss-
ing responses in the training target Y can be imputed
using the corresponding entries in X B, where X is the
expertise required by the training jobs. However, not all
predicted values are useful, since a worker will usually
respond to only a small number of jobs. We choose to
impute the missing entries in Y using the correspond-
ing values in X B with the highest predicted responses.
However, if too many such missing entries are imputed,
a large amount of noisy entries may be introduced. An-
other question is what value (7 in Algorithm 2) to use for
imputation. We study the sensitivity of the algorithm
to these two parameters (7 and k) in the experiments,
along with the convergence of the algorithm. Denote
the imputed worker-job response matrix by Y, we can
then calculate a new feature vector for a worker by sum-
ming up the feature vectors of the jobs (in the matrix
F) that are assigned to the worker according to Y.

Algorithm 2 Tterative Graph-fused Least Mean Square
Input: X, Y, D, F, 7, k, MaxIterNum
Initialization: D =UXV ', G=UU".
for s =1 — MaxIterNum do
Run Algorithm 1 with current G to obtain B*.
Select the top k entries from each row of X B with
the largest magnitudes.
Impute the missing entries with value 7, denote the
imputed Y by Y.
Re-compute the worker profile D=YF.
Re-compute the inter-worker graph D =UxVT,
G=UU".

end for

Output Bs.

5 Experiments

We demonstrate the effectiveness of the proposed frame-
work using worker-job matching on several question-
answer websites. Here a worker is a registered user and

a job is a question asked by a user. After worker exper-
tise is estimated using the training data, the goal is to
retrieve questions on the test set for the existing users
who appear in the training set. Since most users only
answered a few questions, the evaluation shall focus on
the ranking of the retrieved questions and we use AUC
as the evaluation metric.

5.1 Datasets Three question-answering (QA) web-
sites from the StackExchange system are adopted: cs-
theory, unix and english. Given the raw data, stop words
were pruned and we extracted the bag-of-word features
from the processed texts, with tf-idf transformation ap-
plied to the question-word matrices. We use the fea-
tures of the questions that a worker has responded to as
his/her auxiliary profile (as a row in D). Note that even
we have observed all the worker responses, there are cer-
tain missing questions that a worker failed to response.
We consider such questions as missing responses for the
workers and try to fill up these missing responses while
estimating worker expertise.

We ran LDA using the GibbsLDA++ package ! on
the question-term matrices to extract latent factors as
the skills/expertise required by the jobs (i.e., the ma-
trix X'). The number of skills is fixed at 200 and other
parameters of LDA are set to default values. For prac-
tical applications, it is non-trivial to build standardized
skill sets [3], which are left to the practitioners’ dis-
cretion. We selected users who has answered at least
2 questions into the worker-job response matrix, and
randomly split the questions into 3 equal-sized disjoint
subsets for training, validation and testing. The various
dimensionalities of the datasets are shown in Table 2.

We explore various distribution characteristics of
the unix datasets in Figure 1 (the other datasets exhibit
similar characteristics) and get the following observa-
tions. First, the majority of the questions/users have
only a small number of answers. For example, only 2311
out of 6149 questions got at least 2 answers on cstheory.
If we consider two workers who answered the same ques-
tion as competitors for that question, the constructed
worker competition network would be highly discon-
nected, as evidenced by the large number of strongly
connected components (# of SSCs) in Table 2. Thus
the BTL assumption [26] made in [2, 20, 28] is not sat-
isfied. Second, if the simple regression-based approach is
adopted (see Eq. (2.2)), for a worker who only answered
a few questions, the estimated worker expertise would
concentrate on that associated with the answered ques-
tions. This is undesirable as the generalization power of
the estimated expertise is quite limited.

Igibbslda. sourceforge.net



Table 2: Datasets

cstheory unix english
# Workers 707 4632 4909
# Jobs 4580 40011 39505
# Responses 8545 56819 79961
# Train 1851 16056 15912
# Valid 1392 11954 11798
# Test 1337 12001 11795
# of SCCs 548 2789 3766
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Figure 1: Number of responses per job/worker

5.2 Baselines We employed baselines that consider
different perspectives of expertise estimation.

e LDA: we use the latent factors obtained from LDA
as expertise required by the jobs, and aggregate the
expertise of the jobs that a worker has responded
to as the worker’s expertise. This baseline does not
consider the quality of worker responses Y.

e LR: for each worker, we estimate his/her exper-
tise based on the observed X and the worker’s re-
sponses (binarized) Y, using logistic regression im-
plemented by the LibLinear package.

o RegLMS: we apply the regularized least mean
square regression (Section 2.1.4). This baseline
can not only consider the quality of the worker

0.7} = LDA I [ RegLMS II:I IGLMS [
[0 LR [ GLMS
0.6 - — —
0.5¢
U |
So.4
< 0.3}
0.2}
0.1p
0.0 ! I. |.
cstheory unix english
Datasets

Figure 2: overall performance comparisons

responses to tasks (Y), but also the dependency
among skills ((XTX + I)~1). However there is
no information sharing among workers, and this
baseline can suffer from the sparsity in Y.

e GLMS: we use the graph-fused lasso (Section 3.2).
This baseline incorporates the inter-worker rela-
tionships into RegLMS to encourage information
sharing and address the sparsity problem. How-
ever, it assumes that the inter-worker relationships
can be estimated reliably from the worker feature
matrix D, which may be incomplete.

The proposed algorithm is IGLMS, which brings a
further improvement to GLMS by iteratively estimat-
ing worker expertise and predicting missing worker-job
responses for a more accurate inter-worker graph. Note
that we focus on modeling worker expertise to match
workers to unseen tasks, which cannot be modeled by
matrix factorization based approaches.

5.3 Overall Performance We compare the perfor-
mance of the IGLMS algorithm and the baselines in
Figure 2. Validation set is used to select the best im-
putation parameters (see sensitivity studies). IGLMS
outperforms all baselines on all datasets, and is 34% bet-
ter than the runners-up on the last two datasets. The
worst baseline across all dataset is LR, which utilizes the
least information in the data. LDA and RegLMS have
almost the same performance, and we conjecture that
both of them use about the same amount of informa-
tion: the topic distribution of jobs and the worker-job
associations in the training data. GLMS is not very sta-
ble. It outperforms the other baselines in the last two
datasets, indicating the usefulness of the inter-worker
relationships G. However, it is the second worst al-
gorithm in the first dataset. By jointly modeling the
missing responses and worker relationships, IGLMS en-
hances GLMS and has the best performance.



0.63—— 0.64
0.62 — ) 0.62f, — Test
- 0.60 +—« Validation
u0'61 — Test 0.58
2060 «— Validation 2036
0.59 g-gg o
0.58 oeo
057—% To 12 14 16 0416015 020 025 030

8
Select top k Imputing value

(a) # imputed (cstheory) (b) Imputing value (cstheory)

0.55) * 055
50.50 gO.SO
< <
0.45}| — Test 0.45{| — Test
+—e Validation % =—= Validation \
0.40, 0.30

0415 015 020 0.5
Imputing value

4 6 8 10 12 14 16
Select top k

(c) # imputed (unix) (d) Imputing value (unix)

0.58 0.57
0.56 0.56
0.54 \
052 N 055
50.50 N 350.54
<
0.48 053
0.46/| — Test ' — Test
0.44{| = Validation \ 0.52 * - Validation
04—+ 35 10 12 14 16 016015 020 025 030
Select top k Imputing value

(e) # imputed (english) (f) Imputing value (english)
Figure 3: Sensitivity of IGLMS to the number of
imputed missing responses and imputing value

5.4 Parameter Sensitivity IGLMS has two param-
eters: how many missing worker-job responses to im-
pute using what values. Figure 3 plot the AUC per-
formance of the algorithm with varying parameters on
three datasets. Figures in the first column shows the
sensitivity of AUC to the number of imputed missing
responses (5, 10 and 15), and those in the second col-
umn shows the sensitivity to the imputing value (0.1, 0.2
and 0.3). From the figures, we can see that imputing
only 5 missing values achieves good results over all three
datasets. The reason is that if too many missing values
are filled up, noise can be introduced. On the other
hand, the best imputing value can vary across datasets.
Fortunately, as the figure shows, the performance varies
consistently over the test and validating sets, and we
can use the validation set to select the best value for
the parameter. In fact, the validation and testing per-
formances are highly correlated across all parameters
and datasets, as shown in Figure 4: each point in the
plot is a pair of valid-test (corresponding to the z —y
axes) performance, and as the validation AUC goes up,
the test AUC goes up too.
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Figure 4: Validation AUC vs. test AUC

5.5 Convergence In Figure 5, we plot the perfor-
mance of IGLMS on the validation and test sets as the
algorithm iterates. One can see that the algorithm con-
verges in 4 iterations, and the performances on both
the validation and test sets go up as the algorithm iter-
ates on all 3 datasets. These observations confirm the
convergence of IGLMS.

6 Related Works

Earlier works adopted an information retrieval ap-
proach [23, 27], where various language models includ-
ing TF-IDF, bag-of-words and LDA were used to com-
pute the relevances between jobs and workers. Later on,
more information are incorporated in the language mod-
eling. In [42], the authors jointly modeled answer rele-
vance and quality for question routing. Recent works
utilized the competition relationships among partici-
pants for expertise estimation [41, 38, 36, 2, 20, 28].
The idea is that, the answer scores and the best answer
flags can serve as signals that one answerer (worker) is
better than the other, and such partial orderings can
be translated into relative expertise competences. For
example, in [20], the authors proposed to use ranking
SVM and TrueSkill [11] to model user expertise using
competitions. In [28], an iterative model was proposed
to jointly learn the topics of questions and worker ex-
pertise, using texts and votings of the QA system. As
we analyzed before, these approaches would fail due to
the sparsity of the competition network.

There are works on how to exploit the social net-
work properties of crowdsourcing platforms to find ex-
perts. For example, in [5], the authors formulated the
problem of maximizing the worker confidence (accu-
racy) and minimizing the cost at the same time. How-
ever, they assume that the worker expertise is given,
while we consider expertise estimation. In [4], the
authors proposed to use social network as a media
to reach experts, while the expertise estimation re-
lies on simple text matching. There are also meth-
ods focusing on expert-finding on social networks with-
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out worker-job interactions. For example, author rank-
ing on bibliographic networks has been studied inten-
sively [30, 33, 32]. Team-formation finds a group of
experts for a specific task on social networks [18, 29].
It focuses on the constraints that the team members
need to be well-connected and at the same time have
the skills required by the task. Social networks can also
serve as auxiliary information to the proposed IGLMS
framework. In [34], the authors proposed to estimate re-
viewer expertise in product review on a heterogeneous
network using a propagation-based approach.

The graph-guided fusion multi-task regression be-
longs to a general family of sparse learning algo-
rithms, where the graph-based constraint can be re-
placed by more general regularizations to consider other
types of task relations, including networks [10], disjoint
groups [14], overlapping groups [17] and hierarchies [21].
The problem setting in this paper is of independent in-
terests, where the task relations need to be obtained
from auxiliary data source with incomplete information.
We exploit both data sources to develop an alternative
optimization framework.

7 Conclusions and future work

In this paper we study the important problem of ex-
pertise estimation in crowdsourcing and workforce mar-
kets. We point out the drawbacks of several families
of previous methods, such as sparsity in the responses
and incomplete information in the auxiliary data source.
We propose to address the data sparsity issue by for-
mulating the expertise estimation problem as graph-
fused multi-task regression, where an inter-task graph
is mined from auxiliary data to encourage information
sharing among the estimations of expertise of different
workers. We further propose an iterative framework to
jointly address the data sparsity and incomplete infor-
mation in both the target an auxiliary domains, such
that the output in one domain can improve outcome in
the other. Experiments on 3 real-world datasets demon-

strate that the proposed framework is quite promising.
In the future, we plan to mine and incorporate more
complicated but useful inter-worker relationships from
more auxiliary data in the framework.
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