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Abstract Big data bring a huge volume of data in a great speed and in many formats
with extremely many labels and concepts to be modeled and predicted, such as in
text and image tagging, online advertisement placement, recommendation systems,
NLP. This emerging issue of big data is termed “Extreme Multi-Labeled Classifi-
cation” (XMLC) and is challenging due to the time, space and sample complexity in
predictive model training and testing. We first define general XMLC, and then catego-
rize and review recent methods based on two specific forms of XMLC. We propose a
novel method called active zero-shot learning to reduce the above complexities. Since
the performance of the unseen class prediction largely depends on the seen classes
that have labeled data, we challenge the critical and yet often overlooked assump-
tion that the labeled data can only be passively acquired. We propose a new learning
paradigm aiming at accurate predictions of a large number of unseen labels using la-
beled data from only an intelligently selected small set of seed classes with the help
of external knowledge. We further demonstrate that the proposed strategy has desir-
able probabilistic properties to facilitate unseen classes prediction. Experiments on 4
datasets demonstrate that the proposed algorithm is superior to a wide spectrum of
baselines. Based on our findings, we point out several critical and promising future
directions in XMLC.
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1 Introduction

It is not uncommon to have tens of thousands of classes to predict in some real world
classification problems. For example, Amazon products can be classified into some of
the many categories; a sizable Twitter dataset readily offers millions of hashtags that
can be associated with the tweets; in smart and connected healthcare applications like
senior home activity monitoring, many potentially useful human activities (classes)
can be captured in data stream from wearable sensors. The common task for these
applications is to predict a (usually small) set of relevant labels out of the many la-
bels 1. This classification problem is termed “Extreme Multi-Labeled Classification”
(XMLC) and has been studied most recently [40, 28, 41, 19, 3, 38].

XMLC differs from traditional multi-labeled or multi-class classification, in that
the number of labels can be on the scale of millions. The distinction makes XMLC
more challenging. In the training phase, if one-vs-all multi-labeled classification [30]
are adopted, sufficient labeled data have to be collected for each label to train a rea-
sonably good predictive model. However, since there are so many labels, collecting
annotated data for all the labels can be extremely time-consuming. Also, in the pre-
diction phrase, the time complexity grows linearly with the number of labels, and
becomes a concern in large-scale online systems like advertisement placement or
webpage tagging with millions of labels to be predicted in real time.

In response to these challenges, two major lines of research have been proposed
based on two different assumptions. The first category of methods assumes that cer-
tain amount of labeled data are available for each label. Such assumption holds if the
data can be labeled by a large number of the users, including user-edited Wikipedia
articles, user-tagged tweets, and click-through data. These methods focus on issues
such as prediction time complexity and tail labels that consist of most of the labels
but have scarce true positives [1, 39, 28, 5, 33, 6, 7, 4, 8, 19]. Methods in the sec-
ond category make the weaker assumption that only a small number of classes have
labeled data (the “seen” classes), while the vast remaining classes have zero labeled
data (the “unseen” classes) and need to be predicted, resulting in the so-called “zero-
shot” learning problem [24, 22, 32, 25, 12, 23, 15, 26, 14, 35]. Both lines of research
share the common assumption that the label space is in a low-dimensional space and
the original labels can be expressed using a much smaller set of signals, and model
training and prediction in this compressed space is thus more efficient.

Regarding the label space compression methods, there are two categories adopted
by the XMLC literature, i.e., tree-based (or more generally graph-based) [1, 39, 28, 5,
33, 6] and embedding (or dimension reduction) [7, 4, 8, 2, 13, 18, 20, 21, 36, 38, 42,
41]. Tree-based methods adopt the idea of the traditional decision trees and assume
that the labels can be organized in a tree, with each parent node representing a more
general class than those represented by its child nodes. The tree thus partitions the
label space into disjoint regions represented by leaf nodes. The trees are assumed to
be given [5, 33, 6] or learned [28, 1, 39, 10, 16, 3]. Labels are predicted via traversing
from the root to a leaf node using parent-child connections, or a node similarity met-
ric using the tree structure (siblings can be taken into account). Since the height of

1 “label” and “class” are used interchangeably in this article.
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Table 1: Categorization of relevant the XMLC literature

Compression methods Assumptions
With labeled data for all labels Zero-shot

Tree-based [1, 39, 28, 5, 33, 6] [27, 25, 32, 23]
Embedding [7, 4, 8, 2, 13, 18, 20, 21, 36, 38, 42, 41] [24, 26, 14, 22, 12, 35, 15]

the tree is significantly smaller than the number of original labels, fewer predictions
will be needed and in this sense, the label space is compressed. On the other hand,
embedding or dimension reduction based methods project the many labels onto a
lower dimensional space, where each label gets its own coordinates. Depending on
different objectives captured, random projection [18], PCA [36], CCA [42], deep
neural network [38, 26, 14], hand-crafted features [27], error-correcting codes [12],
multidimensional scaling [19] and matrix completion [40, 41] have been adopted.
We organize the above-mentioned work in Table 1 according to the assumptions and
compression approaches these methods adopted.

2 XMLC problem definition and methodologies

We first formally define the XMLC problem. Let ` be the total number of labels to
be predicted, and p be the number of features of the instances. The training data are
given by {(x1,y1), . . . , (xn,yn)}, where xi ∈ X = Rp and yi ∈ Y = {0, 1}`.
Here, for any l ∈ {1, . . . , `}, yli = 1 indicates that the i-th instance has the l-th
label, and otherwise that the label is irrelevant to the instance. XMLC aims at training
classification models for efficient and accurate predictions of all ` labels with large
` on the test data set {(xn+1,yn+1), . . . , (xn+m,yn+m)} or in general any sample
from X × Y .

Based on the above definition, two more specific problem settings of XMLC have
been studied. In one problem setting (Section 2.1), there are labeled data for each
label, that is, ∀l ∈ {1, . . . , `}, ∃i ∈ {1, . . . , n}, such that yli is known. The problem
can thus be tackled by traditional multi-labeled classification models, such as Binary
Relevance [8, 7] and One-vs-All [30], which train a classifier for each label. However,
a sufficiently large amount of labeled data have to be collected for each label, and the
time complexity of training and prediction is linear in the number of labels. Given
a large `, even a linear time complexity can be prohibitive. Another problem setting
called zero-shot learning (Section 2.2) assumes that labeled data for a small number
of labels can be used to train models to predict all labels. Let the set of d labels
with labeled data be denoted by S (the seen classes), and the set of the remaining k
labels be denoted by U (the unseen classes). Without loss of generality, assume that
the seen classes are indexed by {1, . . . , d}, and the unseen classes are indexed by
{d+ 1, . . . , d+ k}. The space of seen labels is Y = {0, 1}d, and the space of unseen
labels is Z = {0, 1}k, with the two spaces being orthogonal. Zero-shot learning
predicts the k unseen classes z ∈ Z = {0, 1}k using two mappings: f : X → Y ′
and g : Y ′ → Z such that the composed predictive model g ◦ f : X → Z has good
prediction performance on the unseen classes. Here Y ′ can be the same as Y , but is a
compressed version of Y when ` and k are large.
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2.1 Problem setting 1: XMLC with labeled data for all labels

We review representative methods based on label embeddings and trees in this prob-
lem setting. Embedding-based methods employ various dimension reduction approaches.
In [18], compressed sensing is adopted and a random matrix A ∈ Rm×` compresses
the large label space Y to a much lower dimensional space Y ′. Linear regression
models are learned to map from X to Y ′, where the predictions are then decom-
pressed to Y using various algorithms such as OMP (Orthogonal Match Pursuit),
CoSaMP and FoBa. In [36], the authors proposed Principle Label Space Transfor-
mation to improve the above random projection. The left-singular vectors of the label
matrix Y ∈ {0, 1}`×n is used to compress the labels vectors intom dimensional vec-
tors. The decoding is simpler than compressed sensing since the singular vectors are
orthonormal. The above two methods only exploit the label matrix Y and do not con-
sider the discriminative information available in X ×Y . In [42], the authors proposed
to adopt Canonical Component Analysis (CCA) to learn to map both X and Y to the
same lower-dimensional space, such that for each training data (x,y), the image of x
is highly correlated with that of y under the mapping. Besides, the authors argued for
the systematic codes [9] that include both the original labels and their images under
the CCA mapping. Although such coding scheme is infeasible for scenarios with a
large number of labels, the CCA-based encoding merits an independent direction in
XMLC research [38]. Bloom filter [8] is a coding scheme that first partitions all labels
into P clusters such that any label vector in the training data can only be contained in
at most one cluster. Then labels in each cluster are coded using a K-sparse vector of
length Q, such that P <

(
Q
K

)
. Notice that bloom filter uses only information of the

labels.

Tree-based methods partition the label space into disjoint smaller regions. The
complexities of coding and encoding can be reduced fromO(`) to the scale ofO(log(`))
given a balanced tree. Based on different splitting criteria, there are various encoding
(tree construction) schemas. In [28], the authors use an ensemble of trees for encoding
and decoding. Specifically, a tree is built by splitting the training instances in a top-
down manner. The split of a node is determined by minimizing the ranking losses of
the rankings in the two resulting children nodes, with splitting uncertainty taken into
account. In [39], the authors proposed to partition the input space X into sub-regions,
each of which is assigned a small number of relevant labels. During testing time, an
instance is first mapped to a single region, and the predictive models for those labels
in that region give the relevance scores of the labels. In this way, the cost of predicting
all labels can be avoided. In [1], the authors proposed a multi-labeled random forest
approach similar to that in [39] to handle millions of labels. Besides these embedding
and tree-based approaches, there is a special case where the two kinds of approaches
meet. In [3], the authors further reduce prediction time complexity in tree-based ap-
proaches, by traversing the learned tree in an embedded space which has much lower
dimensionality (< log(`)) than the original d.
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2.2 Problem setting 2: Zero-shot learning

The above embedding and tree-based methods assume that labels can be collected for
each label for model training. This assumption becomes less prohibitive when there
are many, possibly millions, labels. For example, in the healthcare application where
one wants to identify many potentially useful human activities (classes) in videos, it
is markedly laborious to tag the videos for all possible activities. Another example is
online advertisement bidding [1], where it is impossible for human annotators to go
through millions of labels and training examples (webpages) to identify positive and
negative instances for each label. Instead, they resorted to noisy and biased labels
automatically inferred from the logs of a search engine. Indeed, their experiments
showed that by pre-processing the harvested labels, the performance can be further
improved.

Zero-shot learning approaches make an assumption on the other extreme: no la-
beled data can be collected for the majority of the labels (the “unseen” labels), while
a certain amount of labeled data are available for a small number of labels (the “seen”
labels). Additionally, external knowledge bases describing class relations, such as a
large corpus (e.g., the Internet), domain knowledge (e.g., known attributes of the un-
seen classes) or ontology (e.g., WordNet) are assumed available to turn the predicted
seen labels into predictions of the unseen classes [26, 24, 22]. For example, one can
first collect video segments for a small subset of primitive human activities, such
as simple movements of body parts, to learn a video-to-movement mapping. Then
more complex composite activities can be identified using the predicted primitive
movements via domain knowledge (a composite activity consists of multiple primi-
tive movements).

Zero-shot learning approaches can similarly be categorized into two groups based
on the knowledge bases (an embedding space or a tree of labels) adopted. For embed-
ding based approaches, direct attribute prediction (DAP) and indirect attribute pre-
diction (IAP) [22] are the two fundamental paradigms. More sophisticated zero-shot
models are also proposed, such as max-margin semi-supervised learning for exploit-
ing the unlabeled data [23], and multi-view zero-shot learning for utilizing multiple
data sources [15]. Multiple knowledge bases such as Wikipedia [26, 14], web search
logs [25] and human-annotated images [22] are compared. The authors in [26, 14,
35] propose to learn the intermediate attributes using deep learning. For tree-based
approaches, the authors in [32] proposed three similarity metrics on trees to predict
unseen classes from seen class predictions. WordNet is such a tree of labels, with each
word being a class, and the classes are connected via hyponym-hypernym relation-
ships. The prediction of an unseen class on a leaf node can be obtained by averaging
the predictions of the hypernyms of that unseen class, or the cost-sensitive averaging
of the predictions from all leaf nodes of seen classes [11].

3 Further reduce the labeling cost via active zero-shot learning

Although the zero-shot learning literature has addressed some of the crucial issues,
it assumes that the zero-shot models can only passively learn from labeled data col-
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lected for a pre-defined subset of seen labels [23, 26]. That is, labeled data are avail-
able for the given seen classes but not for the unseens, and a zero-shot learning al-
gorithm has to predict unseen classes using the given labeled data and dependencies
among labels. However, an important observation is that, due to the complex de-
pendencies between seen classes and unseen classes, different seen classes provide
varied predictive information for the unseen classes. When a good selection of seen
classes are not provided, or does not provide sufficient information (e.g., too few
seen classes), we need to decide for which classes labeled data should be collected to
predict unseen classes well. In other words, the splitting of all classes into seen and
unseen sets of classes is a parameter to optimize in zero-shot learning, while none of
the previous zero-shot learning methods has addressed the problem.

We contribute to this class splitting problem and propose to actively and intelli-
gently select a parsimonious set of core classes to collect labeled data, and keep the
large number of remaining classes unseen to save labeling efforts. Traditional multi-
labeled active learning algorithms are less relevant here, as they assume that for each
and every label, certain labeled data have to be queried [29, 37]. We propose to select
the labels as seen ones that can provide most information regarding the unseen ones,
and characterize such informativeness of a candidate class via the entropy of inter-
class similarities. We empirically show that the inter-class similarity follows a beta
distribution, based on which we reveal the relationship between the entropy and the
probability that an unseen class is sufficiently connected to the seen ones, thus justify
the proposed class selection criterion.

3.1 Problem Formulation

Since we focus on the effects brought by a class split, we fix the following com-
ponents of zero-shot learning. We adopt the DAP [22] paradigm and want to select
d classes as seen classes to form the compressed space Y ′, such that d is small to
minimize labeling efforts, and the prediction for the unseen k classes is optimized.
Logistic regression is adopted to learn the mapping f fromX to Y ′. A class similarity
matrix K is derived from a related corpus as the knowledge base (see the experiment
section). One can view K as the adjacent matrix of the graph G = (V, E), where
V is the set of all classes and the edge weights are the class similarities. Given two
index sets I and J , letKIJ be the sub-matrix ofK that consists of the rows indexed
by I and columns indexed by J . Then KUU is the similarity matrix for the unseen
classes, and KUSij is the similarity between the i-th unseen class and the j-th seen
class. With ŷ ∈ Rd being the predicted seen classes for x, the mapping from Y ′ to Z
is g : ŷ 7→ KUS ŷ.

3.2 Methodology

We propose to iteratively add from the pool of unseen classes more labels that are in-
formative about the remaining unseen classes. The connectivities between the classes
can be indicators of information about one class carried by others. Specifically, the
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connectivity between the i-th unseen class and the other unseen classes can be mea-
sured by various centrality metrics of the corresponding i-th node on the sub-graph
of G consisting of all unseen classes. For example, the degree centrality of the i-th
unseen class can be calculated as

∑k
j=1K

UU
ij , where k is the current number of un-

seen classes. We call this strategy “max-deg-uu” as it selects the unseen class with
the maximal degree. This selection strategy does not consider the distribution of the
class similarities between class i and others: class i can be strongly connected to
only a few unseen classes with high weights, but barely so to the remaining majority
classes. Such a class can still have a high degree, but does not add much information
about the remaining unseen classes.

Instead, we use entropy to characterize how the connectivitiesKUUij , j = 1, . . . , k

distribute. First, the similarities in KUU are normalized to a probability distribution:

K̄UU = diag(1>KUU )−1KUU , (1)

where diag(v) denotes the diagonal matrix with diagonal elements being the en-
tries of the vector v, and 1 is the all-one vector. Then we calculate the entropy of
KUUij , j = 1, . . . , k for the i-th unseen class:

H(i) = −
k∑
j=1

K̄UUij log K̄UUij , i = 1, . . . , k. (2)

We select the top c classes that have the highest entropies and move them from U
to S. The labels of the training instances for the selected classes are queried and
used to train a model for each of those c classes. These models are then added to f .
This cycle of selection, querying and training are repeated until the labeling budget
runs out. Lastly, we obtain the zero-shot model g ◦ f . The algorithm is shown in
Algorithm 1.

Algorithm 1 Active Zero-shot Learning
Input: Unlabeled training data {x1, . . . ,xn}, class similarity matrix K, budget b.
Output: Zero-shot prediction model g ◦ f .
Randomly select seeding classes to form S, and let U = {1, . . . , d+ k} \ S.
while b > 0 do

Normalize the sub-matrix KUS by Eq. (1).
Calculate the entropies using Eq. (2).
Select c classes, denoted by T , that have the largest entropies.
Query the labels of T for each training instance.
S = S ∪ T , U = U \ T , b = b− c× n.

end while
Train classification model f for the labels in S.
Return g ◦ f with g = KUS .
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4 Theoretical Justification

The seen-unseen class split has effects on the resulting mappings f and g. We study
the effects on f in the experimental sections, and here we compare the effects that the
proposed strategy and max-deg-uu have on the linear mapping g : y 7→ KUSy. The
prediction of the i-th unseen class is given by KUSi: y. We view the entries of KUS

as random variables and analyze the patterns in which the significant values in KUS

distribute. Suppose the i-th unseen class is only associated with the seen ones through
insignificant coefficients, then the unseen class predictions through the linear model
KUSi: are less confident. Also, if the unseen class is only related to a few seen classes,
even if the connections are strong, the resulting prediction can be misled due to the
limited number of seen classes, whereas the unseen class can actually be related to
more classes that are not selected into S. We would like to select seen classes such
that they can sufficiently convey information for most of the unseen classes.

Definition 41 (δ-covered unseen class) An unseen class, say the i-th one, is δ-covered
by the selected seen classes if at least one entry in the row KUSi: has magnitude at
least δ.

If an unseen class is not δ-covered, then all the seen classes do not carry significant
information about the unseen class. Let Cδ(S) be the set of unseen classes δ-covered
by S, Cδ(S) = ∪tj∈SCδ(tj), where Cδ(tj) is the set of unseen classes δ-covered by
the seen class tj ∈ S, j = 1, . . . , d. Let ti be the i-th unseen class:

Pr{ti 6∈ Cδ(S)} = 1− Pr{ti ∈ Cδ(S)}
= 1− Pr{ti ∈ ∪j∈[s]Cδ(tj)} ≥ 1−

∑
j∈[s]

Pr{t ∈ Cδ(tj)}

= 1−
∑
j∈[s]

Pr{K̄USij ≥ δ},

where the last inequality follows from the union bound and the last equality from
the definition of δ-coverage. The above provides a lower bound of the probabil-
ity that an unseen class is not δ-covered by any selected seen class. The more and
larger the quantities Pr{t ∈ Cδ(tj)} (or equivalently Pr{K̄USij ≥ δ}), the smaller
the lower bound. For different seen-unseen class splits, the distribution of K̄USij , and
thus Pr{K̄USij ≥ δ} will be different. Given δ > 0 (usually a small value), we want
to pick S, such that K̄USij are samples from a probability distribution that makes
Pr{K̄USij ≥ δ} large, or equivalently, whose CDF (Cumulative Distribution Func-
tion) of KUSij has its major mass at the upper end.

Regarding the distribution of K̄USij , we find out that these coefficients can be fitted
quite well by the beta distribution BETA(α, β), where α and β are shape parameters,
see Figure 1(a) for an example on the unix dataset. How does the entropy guide us
to a more desirable beta distribution of the coefficients? We collect the empirical
entropies defined by Eq. (2) for each seen class, and estimate the shape parameters of
the distribution defined by Eq. (1). We find out that the entropies are correlated with
the fitted shape parameter α: entropy grows as α goes up, see Figure 1(b). Note that



Active Zero-Shot Learning 9

Similarity

0.95 0.96 0.97 0.98 0.99 1

P
d
f

0

50

100

150

200

250

300

350

Frequency

Fitted Beta Prob.

(a) Fitted beta distribution on the unix data set
Shape parameter α

0 500 1000 1500

E
m

p
ir
ic

a
l 
e
n
tr

o
p
y

7.0824

7.0826

7.0828

7.083

7.0832

7.0834

Small entropy

(b) Correlation between α and entropy

Shape parameter β

0 5 10

E
m

p
ir
ic

a
l 
e

n
tr

o
p

y

7.0824

7.0826

7.0828

7.083

7.0832

7.0834

Small entropy

(c) Correlation between β and empirical entropy
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Fig. 1: Similarity modeled as a beta distribution. Empirical entropy is positively cor-
related to the shape parameter α of the distribution

the entropy is less correlated to β (Figure 1(c)). Similar observations are obtained on
the other datasets. Therefore we fix β and plot two beta distributions with α = 0.1
and α = 50 in Figure 1(d). We can see from the figure that, with a larger α (the
red solid line), the beta distribution has more mass at the upper end, and thus more
samples K̄USij from that distribution will be significant values. As a result, the lower
bound of the chance that an unseen class is not δ-covered is small. On the other hand,
with a smaller entropy and α, there can be a significant mass at the lower end (the
blue dotted line).

The classes that are uniformly similar to many unseen classes but with low seen-
unseen similarity can have high entropies after row normalization Eq. (1), max-ent-uu
may be misled to pick such classes. Such seen classes will provide little discrimina-
tive information, as it is harder to tell from this class that which unseen classes are
more relevant. We show in the experiments that the selected seen classes actually
have desirable similarities distributions over unseen ones and carry discriminative
information.
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Table 2: Datasets

askubuntu dba superuser unix
# Training 55684 12070 93106 23069
# Test 55883 12211 93182 23025
# Tags 1003 345 1895 775

5 Experiments

5.1 Experimental settings

StackExchange consists of multiple QA (questions and answers) sub-systems, where
the members can ask and answer questions. Users may provide tags to their questions,
and by prompting the users to associate their questions with relevant tags, the QA sys-
tem can increase the tag quality and completeness and facilitate question organization
and retrieval. We adopt four sub-systems from StackExchange: askubuntu, dba, supe-
ruser and unix. The statistics of the four datasets are given in Table 2. Bag-of-words
representation with TF-IDF transformation is used to obtain the feature vectors of
the questions. Each tag is treated as a class, and a question can have multiple tags,
so the tasks can be formulated as multi-labeled classification problems. Only those
tags that appear in at least 10 questions are kept. Tags provided by the users for the
questions are used as ground truth. Each selection strategy is tested on 20 randomly
picked seeding seen classes, and we report the averaged performances over 20 runs.
Questions are randomly split into disjoint training and test sets. The training data is
used to train classification models (Liblinear with default settings), each of which
maps from features to a seen tag. Then we map the predicted seen classes on the
test data to unseen classes via a similarity graph of the tags. In our experiments, we
embed all tags in a low dimensional space via restricted Boltzmann machine trained
on the text corpus of questions [34]. Tag similarity is calculated through the kernel
function: K(t1, t2) = exp(‖t1 − t2‖2/σ2) where t1 and t2 are the low dimensional
representations of two tags, and σ = 10 throughout the experiments.

We adopt Precision@5 and NDCG@5 as metrics to verify the relevance of the
top 5 retrieved tags. Since there is no previous study on active zero-shot learning,
we compare max-ent-uu with the following baselines that capture different aspects of
seen-unseen class splits.

– max-deg-uu: as mentioned in the methodology section, this method labels data
for the classes that have the highest degree centrality.

– min-deg-us: we take the row sums of the matrix KUS , which captures the total
similarity between the current unseen tags and seen tags. The unseen class with
smallest row sum is picked. The rationale is that unseen tags that are farthest away
from the current seen classes can provide complementary information.

– uncertainty: this method queries for the training data the top unseen classes that
have the highest entropies in their predictions on the training data, according to
the current zero-shot prediction model. This baseline runs in an incremental man-
ner as max-ent-uu and min-deg-us.
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– matrix: in [17] the author proposed a matrix partition algorithm to split a set of
instances into two, such that the mutual information between the distributions of
the two sets is maximized. This method is considered to be a representativeness-
based active learning method. We adapt their model and treat classes as instances.
This algorithm runs in batch-mode and we only report its performance when 100
additional classes are selected.

We set the number of unseen classes selected in each iteration to 2 (c = 2) in Al-
gorithm 1 and the other iterative baselines. We test other values for this parameter
(c = 5 and c = 10) and find out that c = 2 gives the best results.

5.2 Results

In Figure 2, along with the performance of the batch-mode method matrix, we show
how the zero-shot prediction performances of 3 iterative algorithms evolve as more
labeled data are added. Each row in Figure 2 consists of 2 sub-figures showing the
performance in precision@5 and ndcg@5, respectively. In each sub-figure, the per-
formance of max-ent-uu (shown in green solid lines), is compared with those of the 4
baselines. From the figures, we can see that across all datasets and all metrics, max-
ent-uu consistently outperforms all the baselines. In some cases, max-ent-uu ends up
with performance two times better than the runner-up (see Figures 2(b)) and 2(g)).
Interestingly, min-deg-us, uncertainty, and matrix consistently have medium perfor-
mance compared with max-ent-uu and max-deg-uu in all datasets using both metrics
when the iterations finish.

Surprisingly, the seemingly naive method min-deg-us can gradually pick up its
performance and ends up with similar or better performance with the more sophisti-
cated methods matrix in the dba and unix datasets. Our explanation is that by selecting
the classes that are least similar to the already picked ones, more information can be
revealed. However, this baseline fails to consider unseen class coverage information,
and the selected classes may not be well-connected to the large clusters of unseen
classes (as we will see next), leading to less effective seen-to-unseen class mapping.
Furthermore, the performance of uncertainty is quite close to matrix in all cases. Our
conjecture is that by picking the current unseen classes that do not have confident
predictions, uncertainty is able to explore the class space that has not been explored
before, and ends up with a seen class space that represents the whole class space quite
well, which is what matrix aims for.

5.3 Empirical analysis of max-ent-uu

In active zero-shot setting, before one queries the labels of the data for a class, it is
difficult to gauge the prior and posterior probability distributions of the class. The
only information available is the class similarity from external knowledge bases. Be-
low we empirically show, in two aspects, that even with such a lack of information,
max-ent-uu is able to pick the informative unseen classes for label queries.
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Fig. 2: Comparisons of the proposed method and the baselines
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Fig. 3: Analysis of seen-unseen tag split resulting from the proposed selection method
(superuser)

In Figure 3(a), we plot the CDFs of the frequencies of the selected classes that ap-
pear in the training instances (namely document frequencies) on the superuser dataset
(best viewed in color). We can see that among the 5 strategies, the max-deg-uu tends
to select classes that have higher document frequencies than those selected by max-
ent-uu, as the CDF of max-deg-uu is more shifted to the right. It has been shown
in text classification that, the more frequent a word appears in the corpus, the less
informative it is, as evidenced by the commonly used tf-idf transformation [31]. A
frequent seen class is likely to be predicted more often by predictive models that take
the class prior distribution into account. Such a seen class becomes a less discrimi-
native feature when used as features in the mapping g. This partly explains why the
baseline max-deg-uu has the worst performance in all cases in Figure 2.

From Figure 3(a), we see that the baseline min-deg-us also tends to select classes
that are less frequent than those selected by max-ent-uu, then why hasn’t min-deg-us
outperformed max-ent-uu? In Figure 3(b), we plot the CDF of the seen-unseen class
connectivities on the same dataset, where connectivities are the row sums ofKSU . We
see that max-ent-uu produces connectivities as strong as those produced by max-deg-
uu. The classes selected by min-deg-us tend to have low connectivities with unseen
classes, as its name suggests. The baselines uncertainty and matrix tend to produce
medium such connectivities, with similar CDFs. If the connectivities are strong, then
the seen classes can provide significant information about the unseen classes, and the
resulting predictions are more confident. This observation also confirms our analysis
of the relationship between entropy (Eq. (2)) and unseen class coverage, and max-
ent-uu will not be misled to find seen classes that have high entropies but only barely
related to the unseen ones. We have similar observations on the other datasets, and
we conclude that max-ent-uu is more likely to find seen classes that simultaneously
possess the following properties: 1) discriminative about the test data (low document
frequency) and 2) informative about the unseen classes (high coverage). The unique
combination of these two properties helps max-ent-uu outperform the baselines.
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6 Future directions

We identify a few promising research directions for XMLC.

– Previous zero-shot learning algorithms utilize knowledge bases such as WordNet,
web search engines, hierarchies and embedded attributes majorly through the se-
mantic similarity information of the labels. One promising future direction is to
exploit logical knowledge in the knowledge bases for better unseen label predic-
tion. For example, WordNet contains part-whole relations between words (e.g.,
“tire” is part of a “car”), and we can use such relations to find the parts given
the label of the whole. Contradiction relation can also prevent the model from
including labels that contradict the reliably predicted labels.

– How to choose the right knowledge base for a specific prediction task is lacking.
Although previous work like [32] did empirically compare the effectiveness of
different knowledge bases on their tasks, there is no formal metric defined for
knowledge base selection. One important question to answer in future XMLC
research is how to define such measurements based on generalization error re-
duction, knowledge base coverage, and knowledge base consistency.

– Human-in-the-loop machine learning, such as crowdsourcing, active learning have
been proved to be critical in improving machine learning models, and XMLC is
such a case. For example, when the prediction of an XMLC model is uncertain,
human experts or the crowd can help resolve the uncertainty. Another way is to
continuously incorporate new knowledge from human beings into the knowledge
bases for better future predictions.

7 Conclusions

We review recent XMLC literature and categorize the published methods based on
the availability of labeled data and label space compression methods. We then study
active learning in the zero-shot prediction setting for the purpose of finding a small
number of informative seen classes to facilitate unseen class predictions. We propose
an entropy-based selection method, which is demonstrated to be able to capture the
desirable distribution and strength of seen-unseen similarities. We model the simi-
larity between classes using a beta distribution to justify the proposed entropy-based
selection method. Experiments show that the proposed method outperforms both rep-
resentativeness and uncertainty based active learning methods.
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