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Machine learning on graphs

o Graph

= Nodes: variables
= Edges: relationship between variables

o Applications

u HUman brain networks . he-human-connectome-project/|
= Chemical compounds: drug discovery Molecule 0

= Social networks '—‘ <S> e

» Fraudster networks

o Graphical models: ML on graphs )
= Node clustering
= Nodes and edges property prediction

= Graph classification or clustering. O O
\

Sourc;: https://bmag.io/2019/10/27/b|ockchain-ecosystem-3—
most-innovative-networking-platforms-in-the-space/ \ -
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Machine learning on graphs




Interpretable ML.: just a CS question?

* Graphical models are not easy to be explained

o Multiple steps of transformation.

o Topology matters: tree vs. cycles.

* The human factors
* Limited memory capacity
* Background knowledge
* Fast and slow thinking.

Source: https://news.dartmouth.edu/news/2015/03/pi-day-party-day-mathematical-mavens

SYSTEM 1 SYSTEM 2

Intuition & instinct Rational thinking

Unconscious Takes effort

Fast Slow
Associative Logical
Automatic pilot Lazy
Indecisive

Source: Daniel Kahneman



Interpretable ML: hypotheses

* Establishing human trust in intelligent agents is non-trivial [1]. Explanations can help.

e But what kind of explanations are more likely to help establish human trust?

* Hypotheses
o Simulatability helps: 1+1=2 but not
o Counterfactual helps: rain = wet ground and !rain = !wet ground

o There are interactions between the two factors.

'

>

A: Low
Trust

Simulatability

D: Low
trust ==

>
Counterfactual relevance

[1] J.Lee, etc. Trust in Automation: Designing for Appropriate Reliance. 2004. Human Factors.



e Settings of the study

* GNN on a citation network (CORA) to predict a paper’s area.

* Extract explaining subgraphs, with different simulatabilities.

* Extract two subgraphs with different counterfactual relevance.
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Interpretable ML: a human subject study
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Interpretable ML: a human subject study

.%ﬂ
* Measuring simulatability, counterfactual relevance, and their interactions: g
E .
* Collected 400 responses. = . B: Low
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Statistical significance tests conducted to consider the size of samples.



Interpretable ML: a multi-objective approach

Multiple objective optimization:

max F(Gi,G:) = (v(Gi), (G, Gi)|)

~

Gi,G;
st. v, €G; CG;C G, |Gi| <C, G acyclic

Large discrete search space and non-differentiable objective functions.

) . G;
* Need to find the Pareto front for balanced and efficient trade-offs. v
00— .
 Algorithm: cooe *«\ @ @ U;
> o . ., ‘-- .. )
* 1) BFS search. 5 . oy
8 ) ~
. . % t’/ G‘i
* 2) explanation evaluation. E 02 <« @
——- Pareto Front Y Shapely //
. . A GNN-MOEx « Gradient YO
* 3) ranking-based explanations | oweene T anepne (0—(3 —i
with provable balance and efficiency. o o7 o o?
Counterfactual Relevance




Experimental results

* Average performance: trade-off between the two objectives?
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Experimental results

* A pitfall in finding well-balanced Pareto optimal explanations

* the ideal case
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Counterfactual Relevance

For more details, see

ICDM 2021.

Yifei Liu, Chao Chen, Yazheng Liu, Xi Zhang, and Sihong Xie.
Multi-objective Explanations of GNN Predictions.

in more cases, the Pareto front is not convex

Simulatability

Counterfactual Relevance

The most balanced
solution is Pareto optimal
but low in both metrics!

A Find solutions that are at
least good at one metric.

10



Machine learning on graphs

Learning on graphs
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Interpretable contrastive ML

e Contrasting two graphs using a Siamese network:

o Graph comparisons: human brains (healthy vs. ADHD) [1]
chemical molecules (soluble vs. non-soluble).

o Contrastive learning: representation learning with scarce labeled data.

Pr(Two brains are similar) Pr(Two molecules are similar)

Siamese networks

00000 00000

e e
| '[00000 00000
; v OH H -
@J\/N\ HO-@-CH—CHQ—NH—CHs
HO" 6H
OH 2

[1] Deep Graph Similarity Learning for Brain Data Analysis. G. Ma, N.K. Ahmed, T.L. Willke, D. Sengupta. CIKM, 2019.
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Explaining the learned contrastive model

* For the explanations to be trusted,
we want

v'Robustness / stability

Explanations should remain the same with i
respect to irrelevant changes. J@

v'Sensitivity
Explanations should be different when the

i
OH
compared object differs. & / \ ¢

* Challenges:

“»The gradient-based explanations are not 2oy Dl R

robust [1] OH

s*the boundary between robustness/stability
and sensitivity is hard to know beforehand.

[1] Smoothed Geometry for Robust Attribution. NeurlPS, 2020.
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Explainable contrastive model: self-explanation

* Learn stable self-explanation for each graph

o No labeled data is necessary. MRX

e Stage 1: learn self-explanations N

ii) Minimize the HO'Q'?H‘CHz‘NH—CHa
i) Mask out insignificant parts while  retained portions OH

preserving self-similarity. to avoid trivial solution i
min £ (f(x,x), f(x, M & x)) +7[a(M)]|, x
s.t. g;(M) <0,i=1,...,c HO CH—CH,—NH—CH,
I O
HO

iii) Additional domain constraints

14



Constrained optimization

e Stage 2: adapt a self-explanation when compared with different objects.

XS Xt ms ® xS mt & xt

OH H
I{l J\/'{]\
= HO CH—CH,—NH—CH, @ HO; --CH—CH,—NH—CH,

HO OH HOT Y OH
j :
OH HO OH \ " n/
ations

Self-expla
SNX: : s t 8 s t i
mmté (f(x X ). e, M Q% )) i) Preserve the comparison results of the input graphs.
ms,m
+7 (Jla(m®)|| + ||a(mt)||) ii) Simplicity of the local explanations.
s.t.  gi(m) gae(m®);|-ja(M°);|£0,i=1,...,cs, iii). Restrict local explanations to
ge,+i(m) =la(m?); Fla(M?*); <0,i=1,...,¢. subset of the self-explanations for robustness.

Solved by gradient descent-ascent: the constraints are enforced softly to allow

15



Unconstrained optimization

* Adapt a self-explanation when compared with different objects.

x5 xt

HO CH—CH2—NH—CH3

HO OH

OH B

SNX-KL:
min £ (f(x",x"), f(m® @ x*, m’ ® x))
+7(l|a(m®)]| + [la(m®)])
IM?) + KL (m'||M?))

m°

+6(KL

m

Solved by the regular gradient descent.

ms ® x5

]

HO

mt ®xt

.Q--CH—CHZ—NH—CHS
!
OH

o

HO n/
Self-explanations
i) Preserve the comparison results of the input graphs.

ii) Simplicity of the local explanations.

iii). Restrict local explanations to
subset of the self-explanations for robustness.
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Experimental results

* Datasets

* Bipolar disorder (BP) classification of human brains.

. . . . .
Chemical molecule in material discovery. Dataset | #graphs | # nodes | #edges | #features | # explain pairs

Molecule 200 } 10.77 ‘ 9.77 ‘ 1068 ‘ 320
. BP 90 82 315.84 82 216
* Overall explanation performance
« faithfulness loss: simulate the target prediction ({ )
» conformity: agreement with the self-explanation ().
BP 25 Molecule
FA(!l) Conformity( 1) FA(!l) CF(1)
2.0 2.01
1.5 1.51
1.04 1.0
0.5 0.5
|
0.0 SM PGExp GNNExp SNX-UC  SNX-KL SNX 0.0 SM PGExp GNNExp SNX-UC  SNX-KL SNX
7 7 b 7
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Experimental results

* Convergence of gradient descent ascent.

m°> Q@ x°

HO!

|
AN

mt @ xt

A: Lagrangian multipliers for the constraints
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I 2 3
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. ,
OH HO
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£ 25 £
g % grads of m® D 0.6 grads of m®
Q 2 0.
g 20 sesssaans grads Of mt E ......... grads Of mt e
0.4
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o
10+ 0.2
£ E
O 5- (@]
P4 2 0.0 @ e ——
O_ ) T T T T T T T T
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Iterations Iterations
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Experimental results

e Case study: bipolar disorder in human brains

Method: SNX

Self-explanation Adapted explanation »/‘ﬁ\

The relevance of the
connections between
regions of interest is
based on neuroscience
study [1].

Method: SNX-UC

/ﬂ/i, A - - ‘-m- b

[1] Niccolo Zovetti, etc. Default mode network activity in bipolar disorder. Epidemiology and Psychiatric Sciences, 29, 2020.
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Experimental results

* Case study: molecules

Self-explanations

*The relevance of the identified sub-structure
of the molecules is confirmed by a bio-chemist.

Adapted explanations Other adapted explanations

ms Q) x5 m® Q) x5

<ofl  xlt

NH

NAA. XL

mt & xt mt & xt

For more details, see
Chao Chen, Yifan Shen, Guixiang Ma, Xiangnan Kong, Srinivas Rangarajan, Xi Zhang, and Sihong Xie.

Self-learn to Explain Siamese Networks Robustly.
ICDM 2021.

20




Machine learning on graphs

Learning on graphs
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Unfair predictions on graphs

 Privileged group (0) is treated favorably, compared to the protected group (1).

Social network for job recommendation D< O—— Accounts  Reviews Products

+ ——@ <? /<> Group 0 Group 1
<< N\ A n

45_ 7 S | Oé
\ é i

- + spam
Equally good Wy
candidates SN

O
0O

— non-spam

e Fair predictions should treat data from different groups the same.

% of accounts

70%

25%

5%
<2 [25] =5
Reviewer node degree
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Measuring fairness

* Different types of unfairness due to different reasons

<_|>_
<|_>_
e_

Q)

+

Pr(Y

>

group 0 group1

Disparate impact (Dl): different
probabilities of being positive.

decision boundary
- - 4

group 0

group 1

Not equalized True Positive
Rates (ETRP)

7

- AN

>

group 0  group 1

Not equalized ranking
performances (e.g., NDCG)
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Certificating fairness on graphs

* With multiple fairness metrics, can we certify that they are satisfied?

* For linear model on IID data, it is a simple equation.

for example, to certify statistical parity, SN wTx; Zj_\’:ll w'x;

Ny Ny

For node classification, need to take into account of the connections.

To simplify the problem, consider the linearized GNN*

. 3 K Accounts Reviews Products
Pr(¥; = 1/G; 0) = o ((W)XHO T T o) . O—_
k=0 I o &
* No disparate impact if = Q/<>
K

1 - 1 -

—1[Go] TWEHO® — —1[G,]T (W KH(O)] 0% =0

N, [ 0] ( ) N, [ 1] ( ) I];[O ﬁg(k)

k=0

* Similar certifications for equalized TRP/TNR/NDCG.

* Wu, Felix, etc. "Simplifying graph convolutional networks." In International conference on machine learning, pp. 6861-6871. PMLR, 2019.
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Fair learning with multiple objectives

* Optimizing one metric can harm the others.

Optimize accuracy with equalized

* Find all efficient trade-offs and let the end-users — positive rate, FNR, and NDCG
select the suitable trade-off, possibly using 0.125 d; - eff;r
. . efpor —+— xndcg
additional domain knowledge. e
. . . . . . 0.075
e Multi-Objective Optimization (MOOQ) ol
: << —
0.025
. T N — " A
m;n 5(0) = (51 (0), CwEs fm(o)) . 0000 H 20 L 80 160
[, (@): overall classification loss Optimize accuracy with equalized
positive rate and NDCG
0.150
1,(0) = IP1(0): for removing disparate impact 0.125 di —— efnr
go.mo efpor —— xndcg
I5(0) = IFNR(@): for equalized FNR. %0.075
E 0050 <t o~
1,(0) = IFPR(@): for equalized FNR. 0.025 ///—__\ _—
0.000=% 20 a0 60 80 100
Iterations

= = XN (0): for equalized FNR.
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Fair learning with multiple objectives

min €(6) = (€1(0), ... tm(0)) ",

o6,

Jacobian (J(0));,j = 30,
)

).

Descent in one objective can lead to ascend in another.
How to combine the multiple gradients to ensure
descent in all objectives?

Solve the dual problem:
max ~LI=m 40012
s.t. j"il/lj=1,/1j20,j=1,...,m.

A =[A4, ..., 4] : relative learning rates of the m
objective functions.

loss 2

e Pareto optimum
¢ Inefficient model

35

3 e

\
25 \
\

2 ' 7“
15 Y i \
1 N
\
05 ..N"‘*\s_
- ----0
0
0 05 1 15 2 25 3
loss 1
m
*
0 0= 2 2U6):
J:

N : overall learning rate.

Remarks: 1) it converge to a single Pareto optimum;

2) multiple starting points can lead to multiple

optimal solutions.
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Experimental results

When optimizing one fairness metric with prediction accuracy

« 0.040

0.121 x Epoch 4 X Reg(A=0.1) 0 Epoch 4 X Reg(A=0.1) @ X Epoch 4 X Reg(A=01)
@ 0.10] ezﬂih 8 + Reg(A=1) 9 0.035 Ez‘o)zhs " Rzg A=1) ] 0.04 Epoch 8 + Reg(A=1)
S 0.081 —= Epoch12 @ Reg(A=10) n 0.0301 ~ = Epoch12 @ Reg(A=10) » 0.03 + == Epoch12 @ Reg(A=10)
0 2 = = Epoch 16 A Adversarial » 0.0254 = = Epoch 16 A Adversarial $ == Epoch 16 A Adversarial
g 0.06 == Epoch 20 i — = Epoch 20 g 0.02 == Epoch 20
c 0 + =
€ ooaf ! ®0015] % s o0o01{%
© ¢ Pt \ s LI - A
L 0.02{ T o 0.0101 L o 000] ==t sicanm
5 000] Ye'be o A Z0005] o =% S g
~0.02 W 0,000, *0%-—yg = W - . - . .
\eJ Q 5 Q ¢) Q \eJ Q Ae) Q ) Q \J \eJ Q 5 Q Ae) Q
M o o & & & o o & Y &Y F o o fF & o
NDCG loss NDCG loss NDCG loss
Only adversarial fair learning can efficiently optimize many metrics.
* MOO dominates adversarial fair training
YelpChi YelpNYC YelpZip
Epochs | #Sol's #Dom’d | #Sol’s #Dom’d | #Sol’s #Dom’d
2 10 1 9 0 5 0
detail 4 28 0 31 2 21 0
qu more details, see o ' - 6 117 0 109 1 71 0
Kai Burkholder, Kenny Kwock, Sheldon Xu, Jiaxin Liu, Chao Chen, and Sihong Xie. 2 289 0 912 1
Certification and Trade-off of Multiple Fairness Criteria in Graph-based Spam Detection. 8 26 0
CIKM 2021. 10 447 0 597 0 345 1
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Conclusions

More connections between humans and ML

* Individual and collective perception of fairness and how that influence fairness evaluation.
* Human provide constraints for the learning of fair and transparent ML.

Systematic study

* All aspects of ML are not isolated.

e Dynamics are abundant.
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