Transparent and Fair Machine Learning on Graphs for Humans

Sihong Xie, Assistant Professor

Computer Science and Enginneering

Lehigh University

Machine learning on graphs

$\circ \, {\rm Graph}$

- Nodes: variables
- Edges: relationship between variables

\circ Applications

- Human brain networks
- Chemical compounds: drug discovery
- Social networks
- Fraudster networks
- Graphical models: ML on graphs
 - Node clustering
 - Nodes and edges property prediction
 - Graph classification or clustering.

Source: https://exploringyourmind.com/ the-human-connectome-project/

Machine learning on graphs

Interpretable ML: just a CS question?

- Graphical models are not easy to be explained
 - Message passing and multiplexing.
 - Multiple steps of transformation.
 - \odot Topology matters: tree vs. cycles.
- The human factors
 - Limited memory capacity
 - Background knowledge
 - Fast and slow thinking.

Source: https://news.dartmouth.edu/news/2015/03/pi-day-party-day-mathematical-mavens

Interpretable ML: hypotheses

- Establishing human trust in intelligent agents is non-trivial [1]. Explanations can help.
- But what kind of explanations are more likely to help establish human trust?
- Hypotheses
 - Simulatability helps: 1+1=2 but not 1.1+101.9=103
 - \circ Counterfactual helps: rain \Rightarrow wet_ground and !rain \Rightarrow !wet_ground

 \circ There are interactions between the two factors.

[1] J.Lee, etc. Trust in Automation: Designing for Appropriate Reliance. 2004. Human Factors.

Interpretable ML: a human subject study

- Settings of the study
 - GNN on a citation network (CORA) to predict a paper's area.
 - Extract explaining subgraphs, with different simulatabilities.
 - Extract two subgraphs with different counterfactual relevance.

0	0	0	0	0
very little	little	not sure	much	very much

- perceived simulatability
- perceived counterfactual relevance
- acceptance

Interpretable ML: a human subject study

- Measuring simulatability, counterfactual relevance, and their interactions:
 - Collected 400 responses.

Simulatability helps

A: Low

Trust

C: No

use

Simulatability

B: High

Trust

D: Low

trust

7

Statistical significance tests conducted to consider the size of samples.

Interpretable ML: a multi-objective approach

• Multiple objective optimization:

$$\max_{G_i, \tilde{G}_i} F(G_i, \tilde{G}_i) = (\nu(G_i), |\mu(G_i, \tilde{G}_i)|)$$

s.t. $v_i \in \tilde{G}_i \subset G_i \subset G, |G_i| \leq C, G_i$ acyclic

- Large discrete search space and non-differentiable objective functions.
- Need to find the Pareto front for balanced and efficient trade-offs.
- Algorithm:
- 1) BFS search.
- 2) explanation evaluation.
- 3) ranking-based explanations with provable balance and efficiency.

• Average performance: trade-off between the two objectives?

Multi-objective Explanations of GNN Predictions.

ICDM 2021.

- A pitfall in finding well-balanced Pareto optimal explanations
- the ideal case

• in more cases, the Pareto front is not convex

- The most balanced solution is Pareto optimal but low in both metrics!
- Find solutions that are at least good at one metric.

Machine learning on graphs

Interpretable contrastive ML

- Contrasting two graphs using a Siamese network:
 - Graph comparisons: human brains (healthy vs. ADHD) [1]
 chemical molecules (soluble vs. non-soluble).
 - Contrastive learning: representation learning with scarce labeled data.

[1] Deep Graph Similarity Learning for Brain Data Analysis. G. Ma, N.K. Ahmed, T.L. Willke, D. Sengupta. CIKM, 2019.

Explaining the learned contrastive model

- For the explanations to be trusted, we want
- ✓ Robustness / stability Explanations should remain the same with respect to irrelevant changes.
- ✓ Sensitivity

Explanations should be different when the compared object differs.

- Challenges:
- The gradient-based explanations are not robust [1]
- the boundary between robustness/stability and sensitivity is hard to know beforehand.

Explainable contrastive model: self-explanation

- Learn stable self-explanation for each graph
 No labeled data is necessary.
- Stage 1: learn self-explanations

i) Mask out insignificant parts while preserving self-similarity.

 $\min_{\mathbf{M}}$

ii) Minimize theretained portionsto avoid trivial solution

$$\ell(f(\mathbf{x},\mathbf{x}),f(\mathbf{x},\mathbf{M}\otimes\mathbf{x}))+\gamma \|a(\mathbf{M})\|,$$

s.t.
$$g_i(\mathbf{M}) \le 0, i = 1, ..., c.$$

iii) Additional domain constraints

Constrained optimization

• Stage 2: adapt a self-explanation when compared with different objects.

Solved by gradient descent-ascent: the constraints are enforced softly to allow

Unconstrained optimization

• Adapt a self-explanation when compared with different objects.

Solved by the regular gradient descent.

• Datasets

- Bipolar disorder (BP) classification of human brains.
- Chemical molecule in material discovery.
- Overall explanation performance
 - faithfulness loss: simulate the target prediction (\downarrow)
 - conformity: agreement with the self-explanation (个).

Dataset # gi	apns # nodes	# edges	# features	# explain pairs
Molecule 20	00 10.77	9.77	1068	320
BP 9		315.84	82	216

• Convergence of gradient descent ascent.

• Case study: bipolar disorder in human brains

[1] Niccolò Zovetti, etc. Default mode network activity in bipolar disorder. Epidemiology and Psychiatric Sciences, 29, 2020.

• Case study: molecules

Chao Chen, Yifan Shen, Guixiang Ma, Xiangnan Kong, Srinivas Rangarajan, Xi Zhang, and **Sihong Xie.** Self-learn to Explain Siamese Networks Robustly. ICDM 2021.

Machine learning on graphs

Unfair predictions on graphs

• Privileged group (0) is treated favorably, compared to the protected group (1).

• Fair predictions should treat data from different groups the same.

Measuring fairness

• Different types of unfairness due to different reasons

performances (e.g., NDCG)

Certificating fairness on graphs

- With multiple fairness metrics, can we certify that they are satisfied?
 - For linear model on IID data, it is a simple equation.
 - for example, to certify statistical parity,

$$\frac{\sum_{i=1}^{N_0} \mathbf{w}^\top \mathbf{x}_i}{N_0} = \frac{\sum_{j=1}^{N_1} \mathbf{w}^\top \mathbf{x}_j}{N_1}$$

- For node classification, need to take into account of the connections.
- To simplify the problem, consider the linearized GNN*

$$\Pr(\hat{Y}_j = 1 | G; \boldsymbol{\theta}) = \sigma\left((\tilde{W})^K \mathrm{H}^{(0)} \prod_{k=0}^K \boldsymbol{\theta}^{(k)} \right)$$

• No disparate impact if

$$\left[\frac{1}{N_0}\mathbb{1}[G_0]^{\top}(\tilde{W})^K H^{(0)} - \frac{1}{N_1}\mathbb{1}[G_1]^{\top}(\tilde{W})^K H^{(0)}\right] \prod_{k=0}^K \boldsymbol{\theta}^{(k)} = 0$$

• Similar certifications for equalized TRP/TNR/NDCG.

* Wu, Felix, etc. "Simplifying graph convolutional networks." In International conference on machine learning, pp. 6861-6871. PMLR, 2019.

Fair learning with multiple objectives

- Optimizing one metric can harm the others.
- Find all *efficient* trade-offs and let the end-users select the suitable trade-off, possibly using additional domain knowledge.
- Multi-Objective Optimization (MOO)

 $\min_{\boldsymbol{\theta}} \quad \ell(\boldsymbol{\theta}) = (\ell_1(\boldsymbol{\theta}), \ldots, \ell_m(\boldsymbol{\theta}))^\top,$

- $l_1(\boldsymbol{\theta})$: overall classification loss
- $l_2(\boldsymbol{\theta}) = l^{DI}(\boldsymbol{\theta})$: for removing disparate impact
- $l_3(\boldsymbol{\theta}) = l^{FNR}(\boldsymbol{\theta})$: for equalized FNR.
- $l_4(\boldsymbol{\theta}) = l^{FPR}(\boldsymbol{\theta})$: for equalized FNR.
- $l_5 = l^{XN}(\boldsymbol{\theta})$: for equalized FNR.

Fair learning with multiple objectives

 $\min_{\boldsymbol{\theta}} \quad \ell(\boldsymbol{\theta}) = (\ell_1(\boldsymbol{\theta}), \ldots, \ell_m(\boldsymbol{\theta}))^\top,$

Jacobian $(J(\boldsymbol{\theta}))_{i,j} = \frac{\partial \ell_i}{\partial \theta_j}(\boldsymbol{\theta}).$

Descent in one objective can lead to ascend in another. How to combine the multiple gradients to ensure descent in all objectives?

Solve the *dual* problem:

 $\max_{\boldsymbol{\lambda}} \quad -\frac{1}{2} \|\sum_{j=1}^{m} \lambda_j (J(\boldsymbol{\theta}))_j\|^2$ s.t. $\sum_{j=1}^{m} \lambda_j = 1, \lambda_j \ge 0, j = 1, \dots, m.$

 $\lambda = [\lambda_1, \dots, \lambda_m]$: relative learning rates of the m objective functions.

 η_k : overall learning rate.

Remarks: 1) it converge to a single Pareto optimum;2) multiple starting points can lead to multiple optimal solutions.

When optimizing one fairness metric with prediction accuracy

Only adversarial fair learning can efficiently optimize many metrics.

MOO dominates adversarial fair training ٠

0		YelpChi		YelpNYC		YelpZip	
	Epochs	# Sol's	#Dom'd	# Sol's	#Dom'd	# Sol's	#Dom'd
	2	10	1	9	0	5	0
For more details, see Kai Burkholder, Kenny Kwock, Sheldon Xu, Jiaxin Liu, Chao Chen, and Sihong Xie. Certification and Trade-off of Multiple Fairness Criteria in Graph-based Spam Detection. CIKM 2021.	4	28	0	31	2	21	0
	6	117	0	109	1	71	0
	8	256	0	289	0	212	1
	10	447	0	597	0	345	1

T.

Conclusions

More connections between humans and ML

- Individual and collective perception of fairness and how that influence fairness evaluation.
- Human provide constraints for the learning of fair and transparent ML.

Systematic study

- All aspects of ML are not isolated.
- Dynamics are abundant.