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Machine learning on graphs

oGraph
§ Nodes: variables
§ Edges: relationship between variables

oApplications
§ Human brain networks
§ Chemical compounds: drug discovery
§ Social networks
§ Fraudster networks

oGraphical models: ML on graphs
§ Node clustering
§ Nodes and edges property prediction
§ Graph classification or clustering.

Source: https://exploringyourmind.com/
the-human-connectome-project/

2

Source: https://bmag.io/2019/10/27/blockchain-ecosystem-3-
most-innovative-networking-platforms-in-the-space/



Learning on graphs

Interpretability
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Machine learning on graphs

Interpretability

Multi-objective 
explanation 
optimization
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Interpretable ML: just a CS question?
• Graphical models are not easy to be explained

oMessage passing and multiplexing.
oMultiple steps of transformation.
o Topology matters: tree vs. cycles.

• The human factors
• Limited memory capacity
• Background knowledge
• Fast and slow thinking.

Source: https://news.dartmouth.edu/news/2015/03/pi-day-party-day-mathematical-mavens
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Interpretable ML: hypotheses
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• Establishing human trust in intelligent agents is non-trivial [1]. Explanations can help.

• But what kind of explanations are more likely to help establish human trust?

• Hypotheses
o Simulatability helps: 1+1=2 but not 1.1+101.9=103
o Counterfactual helps: rain ⇒ wet_ground and !rain ⇒ !wet_ground

o There are interactions between the two factors.

[1] J.Lee, etc. Trust in Automation: Designing for Appropriate Reliance. 2004. Human Factors.
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Counterfactual relevance

High simulatability or
counterfactual relevance
is necessary for trust.

High counterfactual 
relevance is not 
sufficient for trust.

High simulatability 
is not sufficient for 
trust.
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Interpretable ML: a human subject study
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• Settings of the study
• GNN on a citation network (CORA) to predict a paper’s area.

• Extract explaining subgraphs, with different simulatabilities.
• Extract two subgraphs with different counterfactual relevance.
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(first graph: 
original graph)
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(second graph:
the explanation)
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(third graph:
counterfactual 1)
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(forth graph:
counterfactual 2)
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sure

much very
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• perceived simulatability
• perceived counterfactual relevance
• acceptance



Interpretable ML: a human subject study
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• Measuring simulatability, counterfactual relevance, and their interactions:
• Collected 400 responses.
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Counterfactual relevance

Statistical significance tests conducted to consider the size of samples.



• Multiple objective optimization:

• Large discrete search space and non-differentiable objective functions.

• Need to find the Pareto front for balanced and efficient trade-offs.

• Algorithm:

• 1) BFS search.

• 2) explanation evaluation.

• 3) ranking-based explanations
with provable balance and efficiency.

Interpretable ML: a multi-objective approach
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• Average performance: trade-off between the two objectives?

• Running time

Experimental results
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Experimental results
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• A pitfall in finding well-balanced Pareto optimal explanations

• the ideal case • in more cases, the Pareto front is not convex

Counterfactual Relevance
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Find solutions that are at 
least good at one metric.

For more details, see
Yifei Liu, Chao Chen, Yazheng Liu, Xi Zhang, and Sihong Xie.
Multi-objective Explanations of GNN Predictions.
ICDM 2021.

The most balanced 
solution is Pareto optimal 
but low in both metrics!

ours

balanced



Learning on graphs
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Machine learning on graphs
Robustness and 

sensitivity of 
explanations.

Interpretability



Interpretable contrastive ML
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• Contrasting two graphs using a Siamese network:
o Graph comparisons: human brains (healthy vs. ADHD) [1]

chemical molecules (soluble vs. non-soluble).
o Contrastive learning: representation learning with scarce labeled data.

[1] Deep Graph Similarity Learning for Brain Data Analysis. G. Ma, N.K. Ahmed, T.L. Willke, D. Sengupta. CIKM, 2019.

Pr(Two brains are similar)Siamese networks Pr(Two molecules are similar)
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Explaining the learned contrastive model
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• For the explanations to be trusted,
we want

üRobustness / stability
Explanations should remain the same with 
respect to irrelevant changes.

üSensitivity
Explanations should be different when the 
compared object differs.

• Challenges:
vThe gradient-based explanations are not 

robust [1]
vthe boundary between robustness/stability 

and sensitivity is hard to know beforehand.

[1] Smoothed Geometry for Robust Attribution. NeurIPS, 2020.

C



Explainable contrastive model: self-explanation
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• Learn stable self-explanation for each graph
o No labeled data is necessary.

• Stage 1: learn self-explanations

ii) Minimize the
retained portions
to avoid trivial solution

i) Mask out insignificant parts while
preserving self-similarity.

iii) Additional domain constraints

M⊗X

X



Constrained optimization
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• Stage 2: adapt a self-explanation when compared with different objects.

𝑥! 𝑥" 𝑚"⊗𝑥"𝑚!⊗𝑥!

Self-explanations

Solved by gradient descent-ascent: the constraints are enforced softly to allow  

i) Preserve the comparison results of the input graphs.

ii) Simplicity of the local explanations.

iii). Restrict local explanations to
subset of the self-explanations for robustness.

SNX:



Unconstrained optimization
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• Adapt a self-explanation when compared with different objects.

𝑥! 𝑥" 𝑚"⊗𝑥"𝑚!⊗𝑥!

Self-explanations

Solved by the regular gradient descent.

ii) Simplicity of the local explanations.

i) Preserve the comparison results of the input graphs.

iii). Restrict local explanations to
subset of the self-explanations for robustness.

SNX-KL:



Experimental results
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• Overall explanation performance
• faithfulness loss: simulate the target prediction (↓)

• conformity: agreement with the self-explanation (↑).

• Datasets
• Bipolar disorder (BP) classification of human brains.

• Chemical molecule in material discovery.



Experimental results
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• Convergence of gradient descent ascent.

𝑚"⊗𝑥"𝑚!⊗𝑥!
𝜆: Lagrangian multipliers for the constraints



Experimental results

19

• Case study: bipolar disorder in human brains

Self-explanation Adapted explanation
The relevance of the 
connections between 
regions of interest is 
based on neuroscience 
study [1].

[1] Niccolò ZoveU,  etc. Default mode network acXvity in bipolar disorder. Epidemiology and Psychiatric Sciences, 29, 2020. 



Experimental results
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• Case study: molecules

Self-explanations

𝑥!

𝑥"

Adapted explanations

𝑚"⊗𝑥"

𝑚!⊗𝑥!
Other adapted explanations

𝑚"⊗𝑥"

𝑚!⊗𝑥!

*The relevance of the identified sub-structure
of the molecules is confirmed by a bio-chemist.

For more details, see
Chao Chen, Yifan Shen, Guixiang Ma, Xiangnan Kong, Srinivas Rangarajan, Xi Zhang, and Sihong Xie.
Self-learn to Explain Siamese Networks Robustly.
ICDM 2021.
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Machine learning on graphs

Fairness certification 
and efficient trade-offs 

on graphs

Interpretability



Unfair predictions on graphs
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• Privileged group (0) is treated favorably, compared to the protected group (1).
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• Fair predictions should treat data from different groups the same.
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Measuring fairness
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• Different types of unfairness due to different reasons

group 0 group 1

+
-
-

-
-
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Disparate impact (DI): different 
probabilities of being positive.

Not equalized True Positive 
Rates (ETRP)
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Certificating fairness on graphs
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• With mulUple fairness metrics, can we cerUfy that they are saUsfied?
• For linear model on IID data, it is a simple equa]on.
• for example, to cer]fy sta]s]cal parity,

• For node classifica]on, need to take into account of the connec]ons.
• To simplify the problem, consider the linearized GNN*

• No disparate impact if

• Similar cer]fica]ons for equalized TRP/TNR/NDCG.
* Wu, Felix, etc. "Simplifying graph convolutional networks." In International conference on machine learning, pp. 6861-6871. PMLR, 2019.

Accounts Reviews Products



Fair learning with multiple objectives
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𝑙! 𝜽 : overall classification loss

𝑙" 𝜽 = 𝑙#$ 𝜽 : for removing disparate impact

𝑙% 𝜽 = 𝑙&'( 𝜽 : for equalized FNR.

𝑙) 𝜽 = 𝑙&*( 𝜽 : for equalized FNR.

𝑙+ = 𝑙,' 𝜽 : for equalized FNR.

• Op]mizing one metric can harm the others.
• Find all efficient trade-offs and let the end-users 

select the suitable trade-off, possibly using 
addi]onal domain knowledge.

• Mul]-Objec]ve Op]miza]on (MOO)

Optimize accuracy with equalized 
positive rate, FNR, and NDCG

Optimize accuracy with equalized 
positive rate and NDCG
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Fair learning with multiple objectives
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Pareto optimum

𝜂- : overall learning rate.  

Jacobian

𝜆 = [𝜆! , … , 𝜆.] : relative learning rates of the 𝑚
objective functions.

Solve the dual problem:

Inefficient model

Descent in one objective can lead to ascend in another.
How to combine the multiple gradients to ensure 
descent in all objectives?

Remarks: 1) it converge to a single Pareto optimum;
2) multiple starting points can lead to multiple 

optimal solutions.



Experimental results
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When optimizing one fairness metric with prediction accuracy

Only adversarial fair learning can efficiently optimize many metrics.
• MOO dominates adversarial fair training

For more details, see
Kai Burkholder, Kenny Kwock, Sheldon Xu, Jiaxin Liu, Chao Chen, and Sihong Xie.
Certification and Trade-off of Multiple Fairness Criteria in Graph-based Spam Detection.
CIKM 2021.



Conclusions
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More connections between humans and ML

• Individual and collective perception of fairness and how that influence fairness evaluation.

• Human provide constraints for the learning of fair and transparent ML.

Systematic study

• All aspects of ML are not isolated.

• Dynamics are abundant.


