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ABSTRACT
Transferring knowledge from one domain to another is chal-
lenging due to a number of reasons. Since both conditional
and marginal distribution of the training data and test data
are non-identical, model trained in one domain, when di-
rectly applied to a different domain, is usually low in ac-
curacy. For many applications with large feature sets, such
as text document, sequence data, medical data, image data
of different resolutions, etc. two domains usually do not
contain exactly the same features, thus introducing large
numbers of “missing values”when considered over the union
of features from both domains. In other words, its marginal
distributions are at most overlapping. In the same time,
these problems are usually high dimensional, such as, sev-
eral thousands of features. Thus, the combination of high
dimensionality and missing values make the relationship in
conditional probabilities between two domains hard to mea-
sure and model. To address these challenges, we propose
a framework that first brings the marginal distributions of
two domains closer by “filling up” those missing values of
disjoint features. Afterwards, it looks for those compara-
ble sub-structures in the “latent-space” as mapped from the
expanded feature vector, where both marginal and condi-
tional distribution are similar. With these sub-structures in
latent space, the proposed approach then find common con-
cepts that are transferable across domains with high prob-
ability. During prediction, unlabeled instances are treated
as “queries”, the mostly related labeled instances from out-
domain are retrieved, and the classification is made by weighted
voting using retrieved out-domain examples. We formally
show that importing feature values across domains and latent-
semantic index can jointly make the distributions of two
related domains easier to measure than in original feature
space, the nearest neighbor method employed to retrieve re-
lated out domain examples is bounded in error when predict-
ing in-domain examples. Software and datasets are available
for download.
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1. INTRODUCTION
Domain transfer for high dimensional datasets, such as

microarray data, text data, web log data, is a challenging
problem. When the number of features is in thousands, in-
domain and out-domain data rarely share the exact set of
feature. In the same time, there may not be any labeled ex-
ample from in-domain. When one uses the union of the over-
lapping and non-overlapping features and leave the missing
values as “zero”, the distance of two marginal distributions
p(x) can become asymptotically very large. Otherwise, if
one only considers those common features, such information
may be limited in its predictability, and many algorithms
may have difficulties to find transferable structures across
the two domains. Therefore, one main challenge to trans-
fer high dimensional overlapping distribution is on how to
effectively use those large number of features that are non-
overlapping or present in one domain but not in the other.
Nonetheless, the main task for inductive learning is to iden-
tify “sub-structures” between the two domains where it is
transferable or the conditional probabilities p(y|x) across
these structures are similar. This is particularly difficult
under the given scenario. First, there are no labeled data
from in-domain, hence the relationship of p(y|x) across the
two domains are not directly measurable. Second, the prob-
lems are high dimensional with missing values. Thus the
second main challenge is on how to look for transferable sub-
structures (or considering subset of features in conditional
probability) in this space.

In order to resolve these two main challenges, we first
bring the marginal distribution of the overlapping distribu-
tions asymptotically closer by “filling up” the missing values
in some reasonable way to be discussed. Then to resolve
the high dimensional problem, we map the original feature
space into a low-dimensional “latent space” where each fea-
ture is a linear combination of high dimensional features. We
show that in this low dimensional space, transferable con-
cepts are easier to discover and their prediction error can be
bounded. By default, most inductive learner usually makes



the cluster assumption indicating that two nearby points
are likely to have the same class label. This is more likely
to hold true in low-dimensional space. Specifically, it has
been shown formally that as the dimensionality of the space
increases, the Euclidean distance between any points in the
high dimensional space is getting asymptotically closer. In
other words, distance-based classification is unreliable in
high dimensional space. For example, in Figure 1(a), we
plot two domains’ data in 3-D space, where the pluses(+)
and crosses(×) are labeled out-domain positive and negative
instances, respectively. The stars(?) and squares(�) are the
unlabeled in-domain positive and negative instances, respec-
tively. The two domains’ data are related since the positives
from both domains lie on the x-y plane while all the nega-
tives lie on y-z plane. However, two domains are different
since they have quite different distribution. When classify-
ing the stars using cosine similarity, because they are closer
to some of the crosses than to the pluses, they are classified
incorrectly, The cluster assumption is obviously violated in
this space. Next, we will briefly summarize the proposed
approach and come back to this example to see how the
problem is being resolved.

Given these challenges, we propose a new latent space
based method for domain transfer where there is no la-
beled in-domain data and both out-domain and in-domain
are high-dimensional. Briefly, the proposed approach has
three main steps, as depicted in Figure 2. We first employ a
“multiple regression method”to fill up those“missing values”
across the two domains in order to draw the marginal distri-
butions closer, here we assume that the discrepency between
distributions of two domains over these overlapping features
are reasonably small (these features are shared by two do-
mains). Then, both the high dimensional out-domain and
in-domain data are mapped into a low-dimensional latent-
space. In order to classify an unlabeled in-domain example,
we retrieve the closest neighbors in the latent space to the
in-domain example and use weighted voting as the predicted
class label. To be exact, regression models are built using
out-domain data, taking overlapping features as indepen-
dent variables and non-overlapping features as dependent
variables. Missing values in in-domain are filled up by these
models. Intuitively, these uniform transferable models de-
scribe feature dependency in both domains, thus data will
lie in the same space and marginal distribution p(x) become
closer (see Section 3.2). Second, we propose to use SVD
(Singular Value Decomposition) for dimension reduction and
similar structure discovery. SVD first maps the high dimen-
sional out-domain and in-domain data to a latent space with
lower dimension. In this space, data giving the same con-
cept will lie nearby[5] (see Section 3.3), i.e. the closer two
instances are, the more likely they are having the same la-
bel, thus p(y|x) across domains will be similar within cluster
where instances are coherently nearby. To exploit this simi-
lar conditional distribution, given an in-domain instance x0,
those out-domain instances which are most close to x0 are
retrieved and x0 is classified by similarity-weighted voting.
Now, let’s re-visit the previous example. We apply SVD
on two domains’ data (step 3 in Figure 2) and the lower
dimensional representation in latent space are obtained, as
plotted in Figure 1(b). For each in-domain point x(star or
square), we retrieve p nearest out-domain points (plus or
cross) and classify x according to the labels of the retrieved
points and the corresponding similarity (step 4 in Figure 2).
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Figure 1: Illustrating Example

Note that the cluster assumption holds in this space. We can
see clearly that the stars/squares are now approximately in
the same direction of the pluses/crosses, all retrieved out-
domain points will be pluses/crosses.

Our contributions are as follow: (1) We propose a transfer
learning framework which make joint distributions of two
high dimensional domains with overlapping features eas-
ier to measure, and thus identify transferable concepts is
straightforward. Multiple regression and SVD are used to
resolve the difficulties to measure and identify structures
with similar p(x) and p(y|x) respectively. The experiments
results demonstrate the proposed framework outperforms
traditional learning algorithms including SVM. (2) Formal

Figure 2: Flow Chart of the Proposed Framework



Table 1: Symbols Definition
Symbol Definition

(X`, Y `) Labeled out-domain data
(Xu) Unlabeled in-domain data

(X̂u) Xu with predicted missing values
` Number of out-domain
u Number of in-domain points

p(x) marginal distribution
p(y|x) conditional distribution

F+ Features exist only in out-domain
Fc Features shared by two domains
W input high dimensional space
S low dimensional latent space

A Data matrix combining X` and X̂u

U Matrix of principle direction
Σ Matrix of singular values
V Matrix of principle component
k Dimensionality of latent space

analysis demonstrates that missing values importation via
regression asymptotically reduces the difference between two
marginal distributions p(x) than one without importation.
In the low dimensional latent space, we give the upper bound
of nearest neighbor classifier used in the given transfer learn-
ing scenario. This condition is guaranteed by the clusters
recovery process[5]. (3) The proposed framework can be
generalized to include various regression and cluster meth-
ods, not limited to the experimental choices.

2. LATENTMAP: MEASURE AND TRANS-
FER OVERLAPPING DISTRIBUTIONS

We introduce latent space based transfer learning frame-
work between two domains that lie on two different spaces
that are at most overlapping. We summarize symbols and
their definitions in Table 1. Suppose we have ` labeled out-
domain instances (X`, Y `) = {(x1, y1), . . . , (x`, y`)} and u
unlabeled in-domain instances Xu = {x`+1, . . . ,x`+u}. Let
X` and Xu also denote matrices, each row represents an in-
stance while each column represents a feature. We assume
that two domains’ data fall in two categories (y ∈ {0, 1}).
As an important step, we first discuss how to perform multi-
ple regression to fill up the missing values, then SVD-based
dimension-reduction and clustering is briefly discussed.

2.1 Missing Values Importation
Since two spaces are overlapping or they only share some

small number of features, when a classification model is
trained on out-domain data using all its features then sub-
sequently use to prediction in-domain documents, one need
to consider how to properly handle those “missing values”
or features in F+ that exist only in out-domain but not
in in-domain. As we shall see in Section 3, if we leave
those missing values as “zeros”, the distance between any
two points can be asymptotically very large and order of
difference between different points are difficult to distin-
guish. Nonetheless, if we fill up the missing values in some
reasonable way, the order of the difference between closer
points and further points is more measurable. We propose
to use “multiple regression” to fill up those missing values
across the two domains. Let Fc denote the set of features
overlap across domains, and H` and Hu denote the out-
domain and in-domain data X` and Xu projected on Fc

respectively. Let F+ = {f1
+, . . . , f

|F+|
+ }. The values of out-

domain points on F+ can be seen as a series of column
vector yl

+, l = 1, . . . , |F+| (not class label) while the val-
ues of in-domain points on F+ are missing. |F+| regression
models M = {M1, . . . , M|F+|} can be built using H` as ob-
servation of independent variables (namely, features in Fc)
and yl

+, l = 1, . . . , |F+| as observation of dependent variables
(namely, features in F+), thus Ml gives the estimated func-
tional relationship between Fc and f l

+. Ml is then applied
on Hu to predict the values of all in-domain points on f l

+,
and thus missing values are filled up.

Various regression models can fit into the proposed frame-
work, since they are basically seeking a function such that
the predictions are expected to have deviation from the ac-
tual values within a given small tolerance ε for all the train-
ing data. For implementation, ε-Support Vector Regression
(ε-SVR)[13, 14] is employed to fill up missing values, it can
be formulated as:

minimize
1

2
‖w‖2 + λ

n
∑

i=1

(ξi + ξ∗i )

s.t. yli
+ − 〈w,hi〉 − b ≤ ε + ξi

〈w,hi〉 + b − yli
+ ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0

where hi is the i-th row in H` and yli
+ is the i-th entry of

yl
+. ξi, ξ

∗
i are slack variables, w is the model parameter and

λ determines the trade-off between the generalization abil-
ity (measure by ‖w‖2) and the amount up to which devia-
tions larger than ε are tolerated. The functional relationship
learned using H` and yl

+, i.e. Ml, is then applied on Hu (can
be seen as new-coming examples in the same space with H`)
and give prediction on yl

+. The aim of multiple regression is
to minimize the discrepency between the marginal distribu-
tions of two domains. Admittedly, H` and Hu come from
different distributioins, however generalization error bound
is given in [16] when training and test data are from different
distribution, and this justifies our regression strategy.

2.2 Dimensionality Reduction
The marginal distributions p(x) of two domains are made

easier to measure and quantify in the input space W via
missing values importation. However, the dimension of the
vector space is still so high that makes it hard to identify
similar structures across domains. Given a point x ∈ R

n, as
n grows, the distance between the “nearest” neighbor to x

will approximate to the distance from the “farthest” neigh-
bor to x. Thus, the distance in high-dimensional space is
meaningless. Since for any reasonable problem, one makes
the the clustering-manifold assumption that nearby points
will have similar label, the Euclidean distance in the high di-
mensional space is no longer a good measure to even apply
this assumption. In addition, there is no labeled in-domain
data, no information of p(y|x) is given, thus the relation-
ship of p(y|x) across domains are not directly measurable.
To solve this problem, one ought to map the data to a low
dimensional space. In this space, sub-structures are discov-
ered in places where in-domain and out-domain points will
have similar labels and the cluster assumption holds across
true with high probability. We propose to use SVD for latent
space mapping and sub-structures discovery.

In short, SVD first maps the data to a lower dimensional
space, this mapping has been proved to be consistent with
k-means clustering’s objective function, namely, the low di-



mensional representation of data are cluster membership in-
dicators from which clusters structure can be reconstructed
[5]. By cluster assumption [1], points in the same cluster
has similar conditional distributions regardless of whether
the points are from the same domain or not, thus we have
identify transferable sub-structure in latent space. Specif-
ically, let A ∈ R

t×d be the feature-instance matrix of two
domains (see Table 1), then each row of A is an instance and
each column of A is one dimension of the union of two space.
We further assume that the the first ` rows are out-domain
instances and the next u rows are in-domain instances and
the first |F+| columns are features exist only in out-domain
and the next |Fc| columns represent those overlapping di-
mensions of two spaces, thus d = ` + u and t = |F+| + |Fc|.
SVD is applied on A

A = UΣV T (1)

where Σ is a t × d matrix with diagonal entries (σi, i ∈
{1, . . . , min{t, d}) being the singular values

σ1 ≥ σ2 ≥ · · · ≥ σmin{t,d}

and off-diagonal entries being zero. The t × t matrix U and
the d× d matrix V are the left and right eigenvector matri-
ces, respectively. Note that both U and V are orthogonal
matrices: UTU = It, V TV = Id. Then SVD can be seen as
a solution of PCA by the following equation:

ATA = (V ΣUTU)(ΣV T) = V Σ2V T

where V = {v1, . . . ,vd} is the eigenvectors. For dimension
reduction, we obtain the top k − 1 eigenvectors with largest
eigenvalues (σ2

1 , . . . , σ2
k−1) as new data representation. That

is let Vk−1 ∈ R
d×k−1 contains (v1, . . . ,vk−1) as columns,

then each row υi, i = 1, . . . , d in Vk−1 is a new representation
of xi, i = 1, . . . , d in the k − 1-dimensional space, i.e.

Vk−1 = ATUk−1Σ
−1
k−1 (2)

where Uk−1 is the first k − 1 columns of U and Σk−1 is a
k − 1 × k − 1 matrix keeping the first k − 1 columns and
rows of Σ. Note that we use ATUk−1Σ

−1
k−1 to approximate

the top k − 1 columns of the principle component matrix
instead of truncating the V to k − 1 columns which equals
AT

k−1Uk−1Σ
−1
k−1. This is common in information retrieval

and justified by the fact that Ak−1 is the best rank k − 1
approximation of A. Uk−1Σ

−1
k−1 can be considered as a map-

ping T : W → S which maps data in the space W (space
where each dimension represents one feature) to a new lower
dimensional space S (called latent space). For clustering,
[5] has proved that the above dimension reduction also re-
veals the information of the clusters structure which k-means
seeks to discover. Specifically, k-means uses k centroids to
represent k clusters which are determined by minimizing the
sum of squared error

Jk =

k
∑

l=1

∑

i∈Cl

(xi − ml)
2 (3)

where ml =
∑

i∈Cl
xi/nl is the centroid of cluster Cl and nl

is the number of points in Cl. Let Qk−1 = (q1, . . . ,qk−1)
be cluster membership indicator vectors (we’ll show how to
reconstruct cluster structure later) such that QT

k−1Qk−1 =

Ik−1 ∈ R
(k−1)×(k−1) and qT

l e = 0, l = 1, . . . , k − 1. Then
the k-means objective can be written as

Jk = Tr(ATA) − e
TATAe/n − Tr(QT

k−1A
TAQk−1) (4)

since the first two terms in Equation (4) have nothing to do
with Qk−1, then the k-means objective becomes

max
Qk−1

Tr(QT
k−1A

TAQk−1) (5)

The objective (5) has a closed form and global optimal so-
lution which is the eigenvectors Vk−1 = (v1, . . . ,vk−1) of
ATA. The clusters structure can be recovered by construct-
ing a connectivity matrix:

Sim = Vk−1V
T

k−1 (6)

The entry Simij can be interpreted as connectivity between
xi and xj , we can associate a connectivity probability be-

tween xi and xj : cij = Simij/Sim
1
2
iiSim

1
2
jj . Finally, the

clusters structure is determined such that xi and xj are in
the same cluster if and only if cij > β.

The effect of SVD is three-fold. First, further bring the
marginal distributions p(x) in S close given p(x) is suffi-
cient close in W , this is achieved by the mapping given by
Uk−1Σ

T
k−1 as we will see in Section 3. Second, identify trans-

ferable sub-structure through which out-domain knowledge
can be used for in-domain learning. Given an unlabeled in-
domain instance, we exploit the cluster structure by using
top p nearest labeled instances for weighted voting.

Label′(xi) =
∑

xj∈N(xi)

Label(xj)Sim(xi,xj) (7)

where Label′(x) is the prediction and Label(x) is the true
label of x and N(xi) is the set of p nearest neighbors of
xi according to Sim. Since given xi, those xj with highest
cij must be in the same cluster of Xi, given the size of the
cluster is large enough, thus points in N(xi) must be those
out-domain points which have the most similar conditional
distribution with xi by the cluster assumption[1]. Finally,
we see that the dimension is simultaneously reduced to k−1.

2.3 LatentMap for Domain Transfer
The above discussion provides us some insights to solve

the problems raised in Section 1. We propose to use both
regression and latent space mapping to bring the distribu-
tions p(x, y) of in-domain and out-domain close and at the
same time reduce the dimensions. We call the proposed
framework LatentMap in the sequel. As shown in Algo-
rithm 1, LatentMap consists of two key steps to deal with
distributional difference between domains. First, X` is used
to give models which describe the relationship between fea-
tures Fc and each feature f l

+, l = 1, . . . , |F+|, then we apply
these models on Xu to fill up the missing values, the result-
ing data is denoted by X̂u. This step ensure we can bring
the in-domain and out-domain marginal distributions in W
close, as shown in Section 3. Then these data is used to
construct the data matrix A, which incorporates X` as its
first ` rows and X̂u as its next u rows. A is decomposed into
three matrices using SVD and new representation of two do-
mains’ data are obtained in the latent space S. It has to be
noted that this representation is indicators of clusters struc-
ture, instances having the same concept will be close in the
latent space S. In other words, points in the same cluster
express similar concepts and their labels are expected to be
the same, thus we bring the conditional distributions p(y|x)
of two domains close in S. Note also that this new repre-
sentation of data have much lower dimensions than the data



have in W and dimension reduction is fulfilled. What fol-
lows is instance retrieval step, given an in-domain instance
xj , j = ` + 1, . . . , ` + u, the labels of p out-domain instances
which are most close to xj are use to vote for the label of xj .
This retrieval process may use instances from other clusters
which xj does not belong to according to the cluster recov-
ery process, nonetheless, the way that points are clustered
depends on β (see the previous section): if β is small, size of
clusters will become large and otherwise small, the cluster-
ing result may not be perfect. By using similarity-weighted
voting, we can ensure that the nearest neighbors (which are
most likely to have the same conditional probability) have
the most significant effect on deciding xj ’s label while those
points with less similarity to xj are not excluded entirely
but have a weaker effect on labelling xj .

Algorithm 1 LatentMap: Transfer Learning between High
Dimensional Overlapping Distributions

1: Input: (X`, Y `), Xu

2: Output: Labels of Xu

3: Build regression models M = {M1, . . . , M|F+|} using X`.

4: Use M to predict missing values in Xu and obtain X̂u

5: Construct A ∈ R
t×d by taking X` as A’s first ` rows and X̂u

as next u rows.
6: Apply SVD on A, A = UΣV T.
7: Present the out-domain data in latent space, Vk−1 =

ATUk−1Σ
−1
k−1

8: for Each in-domain instance υi, i = ` + 1, . . . , ` + u in latent
space do

9: Calculate the similarity between υi and all the out-domain
instance υj , j = 1, . . . , `

10: Retrieve top p out-domain instances based on the calcu-
lated similarity.

11: Label xi by voting using the retrieved instances’ labels.
12: end for

3. FORMAL ANALYSIS
In this section, we provide the theoretical basis for La-

tentMap. In transfer learning, the distributions of the two
domains are different. For convenience, let 0 and 1 be the
subscripts denoting out-domain and in-domain, respectively.
We assume data from two domains are generated accord-
ing to two unknown distributions p0(x, y) = p0(x)p0(y|x)
and p1(x, y) = p1(x)p1(y|x), where pi(x), i = 0, 1 are the
marginals, pi(y|x), i = 0, 1 are the conditionals, and p0(x) 6=
p1(x) ,p0(y|x) 6= p1(y|x). It is difficult for learning algo-
rithms to learn effectively since they usually assume p0(x, y) =
p1(x, y). The pivot is to find ways to mitigate the problem
arising from this difference.

The outline of the analysis is as follows. First, we show
that missing value prediction and participation of the in-
domain data in SVD computation allow us to establish a
bound for |p0(x)−p̂1(x)| in latent space, where p̂1 represents
the induced in-domain marginal in latent space. Next, under
the clustering assumption [1] and by the bounded difference
between the two marginals, we can further assume that the
difference between the two conditionals is also bounded or
at least similar across the two domains. Thus we can show
that SVD not only brings two marginal distributions closer
but also helps us discover clustering structures, where out-
domain instances have their conditionals similar to a given
in-domain instance. Note that we measure marginal distri-
bution discrepency using Euclidean distance, and the Parzen

windows method justifies this:

pn(x) =
1

αn

n
∑

i=1

exp
−

(x−xi)2

2σ2 (8)

where pn(x) is the estimated density at x, given instances
xi, i = 1, · · · , n. Thus pn(x) is the sum of n Gaussians
centered at xi. pn(x) is a function of the distance between
x and the instances xi. In the sequel, we shall consider
the marginal distribution p(x) as the empirical estimated
marginal distribution pn(x) given by Equation (8).

3.1 Generalization Error with different Train-
ing and Test Distributions

As stated before, the challenge of transfer learning is that
the joint distributions p(x, y) of the two domains are differ-
ent. LatentMap aims at bridging this difference by bringing
p̂1(x) closer to p0(x). This strategy is justified by a theo-
rem given in [16] that states that when the joint probabil-
ities p(x, y) of the training and test data are different, the
generalization error can be bounded asymptotically and the
bound has two terms: one bounds the out-domain general-
ization error and the other bounds the difference between
the two distributions. Assume that from the training data
X`, Y ` we can obtain a Bayesian predictive model

p(y|x,X`, Y `) =

∫

p(y|x, ω)p(ω|X`, Y `)dω (9)

where ω is the parameter of the model. For i = 0, 1, let

Gi(`) = Ei
x,yE0

X`,Y ` [log
pi(y|x)

p(y|x,X`, Y `)
] (10)

Note that the expectation Ei
x,y is over x and y with distribu-

tion pi(y|x)pi(x). Thus G0(`) and G1(`) correspond to the
generalization error with and without domain distributional
difference, respectively. To give the generalization bound,
two assumptions are made in [16]: (A) Gi(`) has an asymp-
totic expansion and Gi(`) → Bi as ` → ∞, where Bi is a
constant. (B) The largest difference between the training
and test distributions is finite, i.e.

M0 = max
x,y∼p0(y|x)p0(x)

[
p1(y|x)p1(x)

p0(y|x)p0(x)
] < ∞ (11)

Theorem 3.1 Under the assumptions (A) and (B), the gen-
eralization error G1(`) asymptotically has an upper bound,

G1(`) ≤ M0G
0(`) + D1 + D2, (12)

where

D1 =

∫

p1(y|x)p1(x) log
p1(y|x)

p0(y|x)
dxdy

D2 = 0 if p1(y|x) = p0(y|x) and 1 otherwise.

The detail of the proof can be found in [16]. G0(`) repre-
sents the out-domain generalization bound. D2 is 1 since
p0(y|x) 6= p1(y|x). To minimize the asymptotically gener-
alization error upper bound in transfer learning, we want
to minimize the rest two terms: D1 and M0 relying on
how close the two domain distributions are. First, D1 is
KL-divergence between the two conditionals p0(y|x) and
p1(y|x). Second, max

x,y∼p0(y|x)p0(x) p1(x)/p0(x) will be min-
imized when the difference between the induced in-domain
marginal p̂1(x) and p0(x) (fixed) can be minimized.



Empirically, given a finite number of in-domain points
{x`+1, . . . ,x`+u} generated according to p1(x, y), if the two
conditional distributions are similar, then for all i = ` +
1, . . . , `+u, p(y|xi) will deviate from p(y|xi) only by a small
amount. Thus the estimated D1 will be small. In addition,
given out-domain points X` = {x1, . . . ,x`}, if in-domain
points Xu are close to X`, according to the Parzen win-
dows method, the estimated marginals p1(xi) and p0(xi) at
xi, i = 1, . . . , ` as a function of the distance between xi and
points in X` and Xu, respectively, will also be close. We
conclude that if the difference between the two distributions
can be minimized, then the upper bound of generalization
error can be minimized.

3.2 Missing Value Prediction via Regression
In this section, we analyze the effect of missing value pre-

diction via regression. Given out-domain samples xi ∈ X`

and an in-domain instance xj ∈ Xu, xj ’s values along fea-
tures F+ are missing (treated as zeros), while xi have values
along features F+ ∪ Fc. Assume that x̂j is the same as xj

except having its values along F+ predicted via regression
models trained using X`. x can be projected onto F+ and
Fc, respectively and be written as x = ((xa)t, (xb)t)t, where
xa is the projection of x on F+ and xb is the projection on
Fc. The squared distance between x and xj is given by

D(x,xj) = ‖x − xj‖
2 = ‖xa − x

a
j ‖

2 + ‖xb − x
b
j‖

2 (13)

We assume that the difference between the two marginals
over Fc is bounded, i.e. ∃M1 > 0 such that ∀xi ∈ X`,xj ∈
Xu, ‖xb

i − xb
j‖

2 < M1. Thus the second term in Equation
(13) is the same for both D(xi,xj) and D(xi, x̂j). Consider

the first term in D(xi, x̂j). When ylj
+ are predicted with

SVRs, we have

‖yli
+ − ylj

+‖2 = ‖ < w,xb
i > − < w,xb

j > ‖2

≤ ‖w‖2‖xb
i − x

b
j‖

2 < ‖w‖2M1

where ‖w‖2 is minimized when training the SVR model.

Since xa
i = (y1i

+ , · · · , y
|F+|i
+ )t and x̂a

j = (y1j
+ , · · · , y

|F+|j
+ )t,

thus ‖xa
i − x̂a

j ‖
2 is also bounded and minimized. That is,

∃δ > 0 such that

‖xa
i − x̂

a
j‖

2 =

|F+|
∑

l=1

(yli
+ − ylj

+)2 < δ

and δ is minimized through the regression model. On the
other hand,

‖xa
i − x

a
j‖

2 =

F+
∑

l=1

(yli
+ − 0)2 = ‖xa

i ‖
2

which is fixed depending on xi. Compared with the mini-
mized D(xi, x̂j), D(xi,xj) is bounded but not minimized.
Thus we conclude here that the marginal distribution is min-
imized via regression.

3.3 Bound for Distributional Difference
Projecting the data onto a lower dimensional space (latent

space S) is necessary since the dimensionality of W is high.
In this section, we first prove that the difference between
p0(x) and p1(x) can be bounded in S, given it is bounded
in W . Then by the clustering assumption, we bound the
difference between p0(y|x) and p1(y|x) in S. Once these

two distributional differences are bounded, then by apply-
ing Theorem 3.1 we claim that the generalization error in
transfer learning is bounded through the proposed regres-
sion and SVD-based dimension reduction strategy.

Bound the marginal distributions in latent space In
the previous section, we have discussed how the marginal
distribution difference can be bounded in the space W . In
this section, we further investigate properties of SVD and
show how the difference between the two marginals can be
bounded in latent space S, given this difference is bounded
in W . In step 7 in Algorithm 1, the data matrix A in W
is mapped to S by Vk−1 = ATUk−1Σ

−1
k−1 where Uk−1 =

(u1, . . . ,uk−1). The mapping is T = Uk−1Σ
−1
k−1 : W → S,

a point x ∈ W is mapped to Tx ∈ S that is called x’s
image in S. S can be seen as a space spanned by basis
(u1/σ1, . . . ,uk−1/σk−1). The following theorem concludes
that we can further bound the marginal distributions of two
domains by the mapping T .

Theorem 3.2 Let x,x′ be two vectors in W and Tx, Tx′ be
their images in the latent space S under the mapping T =
Uk−1Σ

−1
k−1 : W → S. If ‖x − x′‖2 < δ, δ > 0, then ‖Tx −

Tx′‖2 < δ

√

∑k−1
j=1

1
σ2

k−1

Proof. First, each column of T , Tj , j = 1, . . . , k − 1 has

norm ‖Tj‖2 =
√

∑t

i=1 |(T )ij |2 =
√

‖uj‖2
2/σ2

j = 1/σj . Sec-

ond, the Frobenius norm the the linear transform T can be
expressed as follow:

‖T‖2
2 = ‖Uk−1Σ

−1
k−1‖

2
2 =

k−1
∑

j=1

t
∑

i=1

|(T )ij |
2

=
k−1
∑

j=1

(
t

∑

i=1

|(T )ij |
2) =

k−1
∑

j=1

‖Ti‖
2
2 =

k−1
∑

j=1

1

σ2
i

Now we are ready to bound the distance of two images
Tx, Tx′ in S.

‖Tx− Tx
′‖2

2 = ‖T (x− x
′)‖2

2 ≤ ‖T‖2
2‖x − x

′‖2
2 < δ2

k−1
∑

j=1

1

σ2
j

thus we have ‖Tx− Tx′‖2 < δ

√

∑k−1
j=1

1
σ2

j

Basically, since we only choose the top k − 1(k <= 10)
eigenvectors, we can use only those eigenvectors whose cor-
responding eigenvalues are larger than 1. Thus the distance
of marginal distributions of two domains can be bounded in
latent space.

Bound the conditional distributions in latent space

In this section, we show that under the clustering assump-
tion [12], the proposed retrieval strategy is optimal in mak-
ing the conditional distributions p0(y|x) and p1(y|x) simi-
lar. Then in the next section, we derive the Bayes risk of
this retrieval process. Following [12], the clustering assump-
tion states that nearby points tend to have the same label.
More precisely, let η(x) be a regression function of y on x,
η(x) = p(y = 1|x), and I(·) be the indicator function. Then
cluster assumption can be written as (C) Let Ci, i = 1, . . . , k
be clusters, then the function x ∈ X → I(η(x) ≥ 1/2) takes



a constant value on each of Ci, i = 1, . . . , k. Alternatively,
the above assumption is equivalent to p(y = y′|x,x′ ∈ Ci) ≥
p(y 6= y′|x,x′ ∈ Ci). So points in each cluster have the same
p(y|x). This is similar to the manifold assumption made in
[1]. The assumption requires that η(x) vary smoothly on
the support of p(x) which is a compact manifold, i.e. η(x)
should not vary significantly in a small enough area on the
manifold. LatentMap follows these assumptions. In real-
ity, however, the assumptions may not hold exactly, so we
employ an instance retrieval strategy to approximate the
cluster structures. For each in-domain instance x, p nearest
neighbors from the out-domain are retrieved. These neigh-
bors are most likely to be in the same cluster as x. Weighted
voting is used to predict the label of x, where a closer neigh-
bor has more impact on deciding the label of x. This is
consistent with the manifold assumption that η(x) of two
points should be close when they are nearby. We conclude
that the conditional distributions p(y|x) of two domains are
brought close within each cluster.

3.4 Upbound the Risk of Nearest Neighbor Clas-
sifier across Domains

In previous section, we show that the generalization er-
ror of transfer learning can be bounded. Since k-nn is em-
ployed as classifier in latent space S, we further analyze the
Bayesian risk of k-nn in LatentMap. We conclude that the
risk can be bounded and the upper bound can be minimized
when two conditional distributions of the two domains are
positive correlated. Assume that the marginal distributions
pi(x), i = 0, 1 are continuous and are measurable with re-
spect to a σ-finite measure ν. Next we show that for any
in-domain instance x, the nearest neighbor of x in the out-
domain converges to x with probability one. We need some
assumptions: (D) Both in-domain and out-domain data lie
in the same space. This is true since both in-domain and out-
domain data are in the latent space S. (E) Let Bx(r), r > 0
be the ball {x̂ ∈ X : d(x, x̂) ≤ r} centered at x with radius
r. Bx(r) has non-negative probability measure, ∀r > 0, with
respect to the in-domain marginal probability.

Lemma 3.1 Let in-domain instance x be drawn according
to p1(x) and out-domain instances x1,x2, . . . be drawn ac-
cording to p0(x). These instances are independent. Let x′

`

be the nearest neighbor to x from the set {x1, . . . ,x`}. Then
x′

` → x with probability one.

Proof. From the second assumption, for a fixed in-domain
point x ∈ X, for any δ > 0 , if the distance between
x and the nearest neighbor x′

` from the out-domain sam-
ples {x1, · · · ,x`} is larger than δ, then all the points in
{x1, · · · ,x`} are outside the sphere Bx(δ), i.e.,

p1{d(x,x′
`) ≥ δ} = (1 − p1(Bx(δ)))` → 0

Consider a series of point sets: P` = {x1, · · · ,x`}, with in-
creasing `, d(x,x′

`) is monotonically decreasing. So the near-
est neighbor of x converges to x with probability one.

To find out the bound, we investigate the Bayes decision risk
in the transfer learning setting. We define the loss function
as 0-1 loss: L(i, j) = 1, if i = j and 0 otherwise. Under such
settings, the Bayes decision rule is

r∗ = min
j

1
∑

i=0

p(y|x)L(i, j) = min{p(y = 0|x), p(y = 1|x)}

= min{p(y = 0|x), 1 − p(y = 0|x)}

The Bayes decision rule minimizes the Bayes risk R∗, defined
as

R∗ = E[r∗] =

∫

r∗f(x)dx

where f(x) =
∑1

i=0 p(y = i)p(x|y = i). We have the follow-
ing theorem that is the counterpart of the analysis of k-nn
in [3] in the transfer learning setting.

Theorem 3.3 Let p(·|y = i), i = 0, 1 be such that with prob-
ability one, x is either 1) a continuity point of p(·|y = i), or
2) a point of non-zero probability measure. Then the risk R
(probability of error) is bounded as

max{R∗
1 , R∗

0} ≤ R ≤ R∗
1 + R∗

0 − 2R∗
1R∗

0 − 2cov(r∗1 , r∗0).

where R∗
i , i = 0, 1 is the out-domain and in-domain Bayes

risk, respectively.

Proof. For a fixed in-domain instance (x, y), let (x′
`, y

′
`)

be the nearest neighbor of x in the out-domain, where y
and y′

` are the labels of x and x′
`, respectively. y and y′

` are
independent. Then the risk of misclassifying x is given by

r(x,x′
`) = E[L(y, y′

`)|x,x′
`] = p(y 6= y′

`|x,x′
`)

= p1(y = 0|x)p0(y
′
` = 1|x′

`)

+p1(y = 1|x)p0(y
′
` = 0|x′

`)

Similar to [3], here we wish to show that r(x, x′
`) converges

to the random variable r∗1 + r∗0 − 2r∗1r∗0 with probabilities 1.
By Lemma 3.1 and the continuity of p(·|y = i), with

probability 1, p(·|x′
`) → p(·|x) for both in-domain and out-

domain posterior probabilities. Thus

r(x,x′
`) → r∗(x)

= p1(y = 0|x)p0(y = 1|x)

+p1(y = 1|x)p0(y = 0|x)

= p1(y = 0|x)(1 − p0(y = 0|x))

+(1 − p1(y = 0|x))p0(y = 0|x)

Since r∗1 = min{p1(y = 0|x), 1 − p1(y = 0|x)} and r∗0 =
min{p0(y = 0|x), 1−p0(y = 0|x)}, r∗(x) can be expressed as
r(x) = r∗1(1−r∗0)+(1−r∗1)r∗0 . Overall risk R = lim`→∞ E[r(x,x′

`)].
Because r(x,x′

`) is bounded below 1, applying the domi-
nated convergence theorem,

R = E[ lim
`→∞

r(x,x′
`)] = E[r(x)] (14)

= E[r∗1(x)] + E[r∗0(x)] − 2E[r∗1(x)r∗0(x)] (15)

= R∗
1 + R∗

0 − 2E[r∗1(x)r∗0(x)] (16)

= R∗
1 + R∗

0 − 2R∗
1R∗

0 − 2cov(r∗1 , r∗0) (17)

where R∗
i is the Bayes risk that is the expectation of r∗i .

Rewriting Equation (14), we have

R = E[r∗1(x) + r∗0(x) − 2r∗1(x)r∗0(x)]

= R∗
1 + E[r∗0(x)(1 − 2r∗1(x))] ≥ R∗

1

similarly, we have R ≥ R∗
0 thus we have

max{R∗
1 , R∗

0} ≤ R ≤ R∗
1 + R∗

0 − 2R∗
1R∗

0 − 2cov(r∗1 , r∗0).

Since r∗ = min{p(y1|x), 1− p(y1|x)}, r∗1 and r∗0 can be pos-
itive correlated, giving a positive cov(r∗1), r

∗
0).



Table 2: Data Summary

Data Sets
Instances Features

|F+|/|Fc|` u |F+| |Fc|
Re vs Si 2020 2008 1081 4172 0.2591
Au vs Av 2005 1980 810 4165 0.1945
C vs R 2431 1951 791 4345 0.1820
C vs S 2007 2373 682 5072 0.1345
C vs T 2218 1837 1007 5017 0.2007
R vs S 1963 1992 1017 4956 0.2052
R vs T 1885 1761 615 4677 0.1315
S vs T 1663 1939 490 5104 0.0960
O vs Pe 1239 1210 230 4091 0.0562
O vs Pl 1016 1046 178 3892 0.0457
Pe vs Pl 1079 1080 233 3834 0.0608

Remark (1) If the two conditional distributions p0(y|x) and
p1(y|x) are identical, the lower and upper bounds are the
same as k-nn’s (see [3]). Note that the upper bound can not
be better than k-nn’s upper bound. (2) In transfer learn-
ing, p0(y|x) 6= p1(y|x), the lower bound is the larger one of
{R∗

0 , R∗
1}, which indicates k-nn can not perform better when

training and test data are from different domains than from
a single domain. The upper bound says that if p0(y|x) and
p1(y|x) are positively correlated, then the upper bound will be
lower. However, when p0(y|x) and y1(y|x) negatively corre-
lates, i.e. two domains’ concepts contradict, then the upper
bound grows. This is consistent with our intuition: transfer
learning will benefit from two domains’ similarity.

3.5 Scalability Issues
One of the crux in LatentMap is to compute the SVD of a

large matrix A. We don’t have compute the exact SVD
which requires O(m2n + mn2) computational complexity
where m and n are number of rows and columns respec-
tively. Iterative algorithms for computing the first k − 1
eigenvectors (and the corresponding eigenvalues) exist such
as Lanczos method. Recently, randomized SVD are pro-
posed, such as the method in [6], it sample columns of a
large matrix according to a suitable probability distribution
then a smaller matrix is constructed on which SVD is ap-
plied. This method provides a good approximation of the
exact SVD and its running time is O(mn + n). Another
issue is find the top p nearest neighbor in ` out-domain in-
stances for u in-domain data in the k dimension space, the
computational complexity is O(k ∗ |`| ∗ |u|).

4. EXPERIMENT
To demonstrate the effectiveness of the proposed frame-

work, we carried out experiments on several data sets fre-
quently used in transfer learning. Results show that La-
tentMap can map the data to a significant low dimension
space where the distributions of two domains are similar.
Missing values are dealt with properly, which improve the
performance when the missing values are relatively copious.

4.1 Data Sets and Experiment Setup
We conducted experiments on three text data sets, all

of which have different in- and out-domain distributions.
We used SRAA (Simulated Real Auto Aviation), 20 news-
groups and Reuters-21758 as three main document classifi-
cation tasks in this experiment. The SRAA corpus contains
73,218 UseNet articles from four discussion groups: sim-
ulated auto racing, simulated aviation, real autos, and real

aviation. The 20 newsgroups corpus contains approximately
20,000 newsgroup documents, while Reuters-21758 contains
21758 Reuters news articles in 1987. Corpora are organized
in a hierarchical manner. Our task is to classify documents
into one of the top-level categories in the hierarchy. For
example, in one of the 20 newsgroups task, we want to tell
whether a document comes from category comp or rec. Since
the distributions of in-domain and out-domain data are re-
quired to be different, we split documents from each top cat-
egory into two sub-categories, one as the in-domain category
and the other as the out-domain category. For example, the
out-domain data consists of documents from comp.windows.x

and rec.autos, while the in-domain data contains documents
from comp.graphics and rec.motorcycles. All three main data
sets are such organized that there are totally 11 transfer
learning tasks in the experiment.

Raw text files are transformed into word vectors. All
letters are turned into lower case and IDF-TF is used to
produce term values. We discard terms whose occurrences
are less than 2. Each word vector is normalized such that
the length of the vector equals one. The Lovins stemming
scheme is used to stem words appearing in the text. Sim-
ple tokening and stop word processing are used according to
weka’s default setting.

In cross-domain text classification problems, some fea-
tures (terms) appear in both domains, while others appear
only in the out-domain and missing in the in-domain, and
vice verse. Table 2 shows the statistics of the features of
all 11 tasks. As we can see, all the cross-domain tasks have
missing values, i.e., F+ is not empty. The last column in
Table 2 shows the ratio |F+|/Fc. In some tasks, this ratio is
quite significant. For example, in the task of Real vs Simu-

lated, |F+| is over one forth of |Fc|. In other tasks such as
Orgs vs Places, the ratio is less than 1/20.

Baseline methods
We compare LatentMap with various learning algorithms,
including naive Bayes (NB), Logistic regression (LR), deci-
sion trees (C4.5) and SVM. For the implementation of naive
Bayes, Logistic regression and decision trees, we use the
Weka package. SVMlight is used as SVM classifier. Pro-
cedural parameters are kept as default for all the classi-
fiers. To predict missing values, we use SVR as our pre-
dictor and the implementation is provided by libSVM. The
traditional learning algorithms assume that the training and
test data are governed by an identical distribution p(x, y) =
p(x)p(y|x). For this reason, we provide these learning meth-
ods with the original high-dimensional data. In particular,
the union of F+ and Fc are used as a whole and miss-
ing values are set to zero. We note that LatentMap has
two key steps. First, the missing values in the in-domain
data are predicted from the out-domain data. And as such,
the induced in-domain marginal is closer to the out-domain
marginal in input space W . Second, projecting the data
onto a lower dimensional latent space S built using both the
in- and out-domain data not only reveals cluster structures
but also provides tight bounds for the two conditionals in
the latent space. To see the effectiveness of these two steps,
we include the following two methods in our comparison:
1) Running k-nn on data with regression but without di-
mension reduction (called k-nnReg, short for k-nn after Re-
gression) 2) Mapping the data with missing values set to
zero to latent space (called pLatentMap, short for partial
LatentMap).



4.2 Performance Evaluation
In this section, the experiment results of LatentMap against

the baseline methods are provided. The results show clearly
that LatentMap is able to bring two domains’ joint distri-
butions p(x, y) closer via regression and latent space projec-
tion, giving rise to a effective transfer learning framework.

Overall Performance Study
The results of LatentMap and other traditional methods on
three data sets are summarized in Table 3 with the best
results in bold font. It can be seen that in most of the
tasks (10 out of 11) the performance is improved signifi-
cantly. One exception is in task Comp vs Sci where the
accuracy is slightly lower (within 3%) than the best of the
baseline methods. Since all the baseline learning algorithms
assume that the underlying distributions p(x, y) of training
data and test data are identical, they perform poorly on
most of the transfer tasks. For example, in the task Rec

vs Talk from the 20 newsgroups data set, the lowest accu-
racy (around 60%) is achieved by Logistic regression and
the decision tree, while the best learner (naive Bayes and
SVMs) make correct predictions around 72%. In this situa-
tion, LatentMap outperforms the best baseline method with
an improvement of near 20%. Over all, the smallest margin
of improvement is around 2% on the task Orgs vs People.

Comparison of LatentMap and two simpler implementa-
tions is depicted in Figure 3. In Figure 3(a), we compare
LatentMap and k-nnReg. It is clearly shown that by filling
up the missing values, either LatentMap or k-nnReg out-
performs the best of the baseline methods in 9 out of 11
tasks. Among these 9 tasks, LatentMap greatly outperforms
k-nnReg in 6 tasks (task 2,3,5,6,7 and 8) and very close to
k-nnReg in 2 tasks (task 10 and 11). This confirms that
the second step that further discovers cluster structures in
the latent space and moves the induced p1(y|x) closer to
p0(y|x) can greatly improve the accuracy. Notice that while
LatentMap has a lower accuracy than k-nnReg in tasks 10
and 11, it is still higher than that of the baseline methods.

In Figure 3(b), we show the effect of multiple regres-
sion. By making the conditional distributions of two do-
mains similar via latent space mapping, LatentMap and
pLatentMap together outperform the baseline methods 9 out
of 11 tasks (tasks 1,2,3,5,6,7,8,10 and 11). Furthermore, by
predicting missing values through regression analysis, La-
tentMap outperforms pLatentMap in 5 out of these 9 tasks
(task 2,3,6,7,11) with other three close to pLatentMap (tasks
8,9,10). Note that in Figure 3(b), on the last three tasks, La-
tentMap performs approximately the same as pLatentMap.
By examining the last column of Table 2, we can see that
LatentMap can achieve greater improvement on tasks where
two domains overlap less or higher |F+|/|Fc| ratio (tasks
Comp vs Talk and Rec vs Sci have the minimal feature set
overlapping among six 20 Newsgroups tasks). Our results
show that LatentMap can effectively lessen the discrepancy
of two domains distributions. In particular, latent space
mapping that discovers cluster structures can greatly im-
prove the performance while regression analysis guarantees
the performance when a large number of values is missing.

Parameter Sensitivity
There are two important parameters in the LatentMap algo-
rithm: dimensionality of the latent space k and the number
of documents in out-domain to retrieve for voting p. We
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Figure 3: Effect of Two Key Steps
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Figure 4: Sensitivity Study

choose one task from each of the three main tasks to exam-
ine the sensitivity issue. Since the distributions of in-domain
and out-domain data are different, parameters chosen using
cross-validation on the out-domain data will not work for
the in-domain data.

In this experiment, parameter p varies from 5 to 200 with
increment 10 and k varies from 2 to 6 with increment 1.
When p is changing, k is fixed at 5. The resulting accuracy
curves are depicted in Figure 4(a). These accuracies are
compared with that obtained from the traditional learning
algorithm whose performance is the best. From the figure,
it is obvious that the accuracy is improved as the number
of retrieved out-domain instances increases, yet it remains
stable after a certain threshold such as p = 150. This con-
firms the cluster assumption. That is, when more nearest
neighbors are selected for voting, the effect of minor mis-
clustered out-domain instances will be diminished or can-
celed out, leading to higher accuracy. The accuracy with
respect to dimensionality of the latent space is higher than
the best baseline classifier. Thus it is not critical which
value k takes. When the underlying latent space’s dimen-
sions are changing, we always retrieve 50 instances from the
out-domain, the resulting curves are shown in Figure 4(b)

5. RELATED WORK
One main challenge of transfer learning is how to resolve

and, in the same time, take advantage of the difference be-
tween two domains. Some are based on instance weighting
strategy ([2, 4, 7, 11]). For example, [4] adopts the boost-
ing weight formula as the re-weighting scheme. Some other
methods base on dimension reduction, which usually map



Table 3: Comparison of Performance

Methods
SRAA 20 News Groups Reuters

Re vs Si Au vs Av C vs R C vs S C vs T R vs S R vs T S vs T O vs Pe O vs Pl Pe vs Pl
NB 0.6838 0.6889 0.8098 0.7042 0.89 0.7113 0.7189 0.704 0.6554 0.6424 0.5769
LR 0.6863 0.6768 0.8467 0.6195 0.933 0.7701 0.5928 0.6818 0.6471 0.6319 0.5046
C4.5 0.635 0.7576 0.6858 0.5908 0.7104 0.6391 0.5997 0.6266 0.5595 0.6195 0.5231
SVM 0.6877 0.7399 0.8401 0.6962 0.9107 0.7400 0.7269 0.7375 0.6860 0.6472 0.5250

LatentMap 0.7311 0.8929 0.9421 0.6890 0.9777 0.9006 0.9154 0.8633 0.7050 0.7094 0.5852

data to a new representation facilitating domain transfer
([9]). Recently, [8] proposes a locally weighted ensemble
framework to combine multiple models for transfer learn-
ing by dynamically assigning weights of a model according
to a model’s predictive power on each test example. [10]
proposes a information theory framework to address cross-
language classification problem. [15] addressed the problem
of cross-domain text classification using PLSA (Probabilistic
Latent Semantic Analysis) to bridge domain transfer.

6. CONCLUSION
We address transfer learning challenges in text classifica-

tion and other related problems, where the spaces of two
domains are at most overlapping, the marginal and condi-
tional distributions are different, and the dimensionality can
be extremely high. We propose a framework (LatentMap)
which draws joint distributions of two domains closer. The
missing values are filled up to minimize the gap between
marginal distributions, then the data is mapped to a la-
tent space where both the marginal distribution and the
relationship of two conditional distributions become easier
to measure. Then, transferable sub-structures can be eas-
ily identified in the mapped low dimensional latent space.
The dimensionality of the latent space is usually below 10,
remarkably smaller as compared to the usual several thou-
sands of the original space. Experiment over 11 text domain
transfer tasks shows that LatentMap works as expected and
achieves great improvement (up to around 20%) compared
to traditional learning algorithms including SVM. Compari-
son with two simpler strategies (k-nnReg and pLatentMap)
in the same transfer learning scenario shows that LatentMap
can combine the advantages of both filling up missing value
and latent space mapping. Parameters sensitivity analysis
shows that LatentMap works well in very low dimensional
spaces and is immune to the variation of the number of re-
trieved out-domain instances.
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