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Abstract. We consider the problem of numerical stability and model
density growth when training a sparse linear model from massive data.
We focus on scalable algorithms that optimize certain loss function using
gradient descent, with either ¢o or ¢; regularization. We observed numer-
ical stability problems in several existing methods, leading to divergence
and low accuracy. In addition, these methods typically have weak con-
trols over sparsity, such that model density grows faster than necessary.
We propose a framework to address the above problems. First, the up-
date rule is numerically stable with convergence guarantee and results in
more reasonable models. Second, besides ¢; regularization, it exploits the
sparsity of data distribution and achieves a higher degree of sparsity with
a PAC generalization error bound. Lastly, it is parallelizable and suitable
for training large margin classifiers on huge datasets. Experiments show
that the proposed method converges consistently and outperforms other
baselines using 10% of features by as much as 6% reduction in error rate
on average. Datasets and software are available from the authors.

1 Introduction

In this paper, we focus on training a sparse large margin model. Assume that we

are given m labeled examples Z = {(x1,1),- -, (Xm,Ym)}, where x; € R i =
1,...,m. We aim at solving the following optimization problem:
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L is any smooth and differentiable loss function such as logistic or hinge loss. A
is the parameter for trading off between loss and ¢; regularization. We are in-
terested in scalable algorithm, with parallelizable data accesses and small com-
munication cost. One can find such application in text mining and webspam
detection, where the number of features could be in millions.

Sparse learning aims at accurate models using a small number of non-zero
elements, with the advantages of efficiency and generalizability [13]. Some exist-
ing methods produce sparse models by forward-backward feature selection [13]
or boosting [3]. Though effective, these methods have to scan the training set



Table 1: Notations and definitions

Notation”deﬁnition |Notati0n||Deﬁnition
X Example in R? X Data matrix
y Label of x Z A series of m labeled examples
w Linear model in R? 0 Dual vector of w in Eq. (8)
Wz Linear model learned from Z w* Optimal linear model
w Vector to be thresholded H(-,s) ||Hard-thresholding function
S(-,A) ||Soft-thresholding function Vf(-) |Gradient of f(-)
A {1 regularization parameter t Index of iterations
n Learning rate [d] Set of indices {1, ...,d}
J Set of indices, J C [d] [[vllo ||The support of v
[vlli ||The sum of |vs], i € [d] |[vl]l2 ||The Euclidean length of v
[[V]loo ||The maximum of |v;| o Eigenvalues

at each iteration, which is expensive or even impossible for large datasets. Un-
der some restrictive assumptions [14], one can achieve sparse models via convex
programming with ¢; regularization or constraint. Though scalable as methods
in [8,12], there are two main drawbacks. First, numerical problems can lead to
iteration divergence or summation cancellation, making the algorithm less use-
ful. Second, ¢; regularization only encourages sparsity and may not be enough
for sparse learning. As the training proceeds, model complexity can grow faster
than necessary and result in dense models, regardless of the regularization.

In this paper, we propose a perceptron-based algorithm to address the above
problems. First, it is numerically stable with convergence guarantee. Second, in
addition to ¢; regularization, it further takes advantage of the sparsity of train-
ing examples to achieve a higher degree of model sparsity, and furthermore, a
generalization error bound which is not provided in [8,12]. Experiments show
that the proposed method converges with steadily reduced test error rates as
the training proceeds. and consistently outperforms previous state-of-the-art al-
gorithms by as much as 8.4% in accuracy using only 10% of all features in one
of the tasks.

2 Numerical Challenges in Sparse Learning

Notations are summarized in Table 1. Note that an element of a vector is in
normal font, for example, w; is the j-th element of the vector w. About norms,
for any v € R%, ||v|[,, < |[Vlp, for any p1 > po [6]. If not otherwise specified,
I - || is equivalent to || - |2

We have observed numerical problems in two sparse learning algorithms using
either ¢; or ¢y regularization.



2.1 Numerical Problems of Direct Iterative Methods

The first problem arises when directly applying matrix iterative methods to solve

a system of linear equations

y=Xw (2)
where X = (xq,... ,xm)T. {1 or {y regularization are used to obtain sparse
model, as in compressive sensing or sparse learning. Suppose there exists an

optimal solution w* satisfying Eq. (2), namely y — Xw* = 0 (0 denotes the zero
vector). The direct method tries to find w* by minimizing the potential function

w(w) = 3y — Xw? 3)

Starting with an arbitrary vector w(®) (usually 0), it follows the gradient direc-
tion at each iteration to reduce the potential function value. The gradient of Eq.
(3) is V¥(w) = =X " (y — Xw) and we update w®) by

wlt) = w0 4 X T(y — Xwl=h) (4)

where 7 is the learning rate. To see when the above iteration fails to converge,
let ¢ = w(®) — w* be the error vector.

e® =wl=D L pxT(y — XwltD) —w* — X T(y — Xw*)
=T —nX"X)(wh D —w*) = MtV

where M = I —nX " X is the iteration matrix. Thus for ¢ > 0 we have
1@ = W —w*|| = [ MV = = || M)

The sufficient and necessary condition for the update rule (4) to converge is
that the spectral radius of M, p(M) = max;{|o;|}less than 1, where o; is the
eigenvalues of M. Formally,

Jim M| =0 p(M) <1 (5)

The above analysis shows that if one cannot guarantee p(M) < 1 at each it-
eration, then update rule (4) may not be applicable in reducing the potential
function.

In addition, we would like w(®) to be sparse. It is shown in [5] that under the
RIP condition [1], a truncated version of update rule (4) reduces the potential
function at each iteration while maintaining a sparse solution. We show that the
truncation does not automatically guarantee the convergence of ¢y constrained
gradient descent. Consider the following iteration

w(t) = H(W(t), s) = D (W(tfl) + nXT(y - Xw(tfl))) (6)

with w(® being a zero vector. w® is the ¢-th solution before thresholding.
H(v,s) : RY — R? keeps only s elements with largest absolute values in v



and set other elements to zero. H(v,s) equals the row selection operation as
shown in Eq. (6). J® C [d] (|J®| = s, ¥t = 1,2,...) represents the set of
indices of s remaining elements in H(W,s). Dju is a diagonal matrix with
D;; = 1,¥j € J® and 0 otherwise. The error vector of iteration rule (6) can
then be written as

[e@)? = W — w*||* = || Dy W) — w2
> || D% = Dy w*||? (7)
= 1Dy WD + X T (y — Xwl=1))]
—Dyo[w* +nX " (y — Xw)]|?
= |Dyoy M(w!= — w*)|?
= || Dy Mt~V

Inequality (7) follows since w, j & J () are held out of the sum of the f5-norm.
Therefore, ||| is lower-bounded by || D ;i Me®=1||2. For the £, projected
gradient descent to converge, Dy M must satisfy p(D ;M) < 1, otherwise,
update rule (6) diverges. Simple truncation using H (v, s) doesn’t guarantee such
condition, as we demonstrated in experiments.

2.2 Numerical Problems of Mirror Descent

The mirror descent algorithm (MDA) has been recognized as an effective online
learning algorithm. For example, MDA using Bregman divergence is proposed to
approximate the exponentiated gradient (EG) algorithm, which have cumulative
loss bound logarithmically to the number of irrelevant features in the target
weight vector [6]. In convergence rate, it is proved that MDA is superior to the
usual stochastic gradient descent methods [12], where MDA is adopted in online
sparse learning. However, the price MDA pays for these advantages is numerical
unstability, especially when the dimensionality of data is high, leading to less
discriminative models. As proposed in [12], the main component of MDA for
sparse learning is the alternative updates of two vectors 6, w € R"™ by the
following rules:

sgn(6;”)(6 P

() _ r=19(t)y —
wj - fj (0 ) - He(t)”p,Q ,V] (8)
p
6 = 50" — v L(Ww),\) (9)
where S(-, A) is the soft-thresholding operator [2]:
S(wj, A) = sgn(w;)(w; — )+ (10)

’LUj—)\, ifwj>()and |wj|>)\
=w;+ A, if w; <0and |wj| > A
0, if|wj|</\

S(v,A) means applying Eq. (10) at each element of v. As suggested in [6], the
parameter p in Eq. (8) is set to O(In(d)) (Note that different p lead to different



“algorithms”, for example, in binary classification, one obtain Perceptron when
p = 2 and Weighted Majority as p — oo. However, for MDA to approximate
the EG algorithm, p should be sufficiently large such as logarithmic p). w and
0 are called primal and dual vector, respectively. In the t-th iteration, MDA
first computes w(®) using w() = f=1(8")), with (¥ = 0. Then the stochastic
gradient of the loss function VL(w(®) is estimated using (x;, ;) at w(*). Finally
gradient descent and soft-thresholding update 0 to get el Converting 0 to
w using Eq. (8) can cause numerical problem in MDA. Specifically, elements of
w could become very small and sensitive to difference of 6;’s scale. The following
lemma reveals the numerical problem that update rules (8) and (9) can bring.

Lemma 1. Assume that the values of features and A in Eq. (9) are in the scale
of O(1). At the t-th iteration of MDA minimizing logistic loss, where t = O(p),

9§t) is also in O(p) and w§t) is at most in the order of O(a™P) for some a > 1.

Proof. Elements of the gradient of the logistic loss V;L(-,-) with respect to

the first argument is L'({w,x),y)x and thus in the order of O(1). 9§-t) is the
summation of ¢ terms in O(1) and thus in the order of O(p). Since ||@||, > [|0||oo,
Jde > 0s.t. |0, > (1 +€)]|0]lc = (1 + €) max; |6;]. By Eq. (8),

16,17~ 10,7~

615~ (1+ e)P=2(max; [6:])7 2

VY G TR

- (1 + 6) max; |91|

— 0(p)O(a>7) = Ofa"")
where a = (1 + €) max; |6;|/]6,] > 1.

lw;| =

Particularly, because w; is exponential in p = O(In(d)), small difference between
exponents of dimensions could be greatly amplified in the resulting model. Con-
sider two entries of @: #; and #;. Without loss of generality, assume that 6; is
only one order smaller than 6 in magnitude: 01| ~ 1071|63|. Reconstruct the
primal vector w from @, we can see that w; is p order smaller than ws in magni-
tude : |wy| = 107P|wy|. When computing the inner product between w and x, if
the difference between exponents of w; and ws is larger than the precision that
the data type supports, then the 2nd element in x would be totally lost. For
example, double precision floating point number supported by C++ (64 bits in
length according to IEEE 754-2008) typically has precision of 10716, Therefore
1.0 + 1.07'7 = 1.0 in machine addition. In general, the larger p is, the more
difference between w;’s exponents. We’ll show in experiment (Section 4.3) how
the parameter p affects the performance of MDA.

3 Efficient and Numerically Stable Sparse Learning

We present the proposed sparse learning algorithm in Section 3.1. In Section 3.2
we show that the method is guaranteed to converge, with numerical errors taken
into account. Finally we show generalization error bound in Section 3.3.



3.1 The Proposed Method

Given the labeled data Z = {(x1,¥1),--., (Xm,Ym)}, drawn from some distri-
bution D over R? x {—1,1}, we consider learning a sparse large margin linear
classifier. This reduces to minimizing certain loss function. There are three con-
cerns. First, the algorithm should be scalable. One of the best practical methods
known is online learning or stochastic gradient descent, which iteratively mini-
mizes the loss function and keeps only the footprint of the sparse model without
storing any example in memory. Second, the algorithm should be numerically
stable. We prefer algorithms which rely on practical assumption and are robust
to small difference in the scale between dimensions of data. Finally, for effi-
ciency consideration, algorithms achieve better classification performance using
less features are desirable.

Algorithm 1 Numerically Stable Sparse Learning
1: Input: margin threshold 7, learning rate 7,
regularization parameter A, density upper bound s
2: initialize linear model w = 0, model density=0
3: while model density less than s do
4: Receive instance (x;,y;) and compute z = y; Wx;

5. if z < 7 then

6: for Each non-zero element z;; do
T Update w; by w; = wj + nzi;y:
8: Soft threshold w; using Eq. (10)
9: end for

10: end if

11: end while

We alter the perceptron algorithm such that it robustly produces sparse
model with convergence and generalization error guarantees (see Section 3.2
and 3.3). The proposed method is described in Algorithm 1. It begins with a
zero vector. During each iteration, it loads an example from secondary storage
and updates the model as the original perceptron (line 4-7). The difference is
that after each online update, the algorithm suppresses the weights in the model
(line 8) using the soft-thresholding operator (Eq. (10)). Since we assume that
the data is separable by a sparse linear classifier, by the fact that the data
is in high dimensional space, it is expected that there would be many noisy
or irrelevant features. For an example classified with margin higher than 7,
it is more likely that the features in the current model w(¥) are sufficient to
make correct decision, and the example is not used for update. This prevents
unnecessarily introducing new features into the current model and maximally
preserves the sparsity without increasing regret. In general, perceptron algorithm
exploits the sparsity of the instance space, and further leads to a model with
fewer features.



The above framework can be applied to very large datasets. The main task
at each iteration is computing (w(*),x), which is in the form of summation
and can be distributed to r machines. One can partition the dataset on a per-
feature basis into r partitions, with each assigned to a machine. Each machine
computes O([d/r]) components in (w®),x). Adding these parts up obtains the
inner product. There are O([d/r]) cost on each machine for I/O and O(r) cost
for communication. Thus the algorithm is scalable via parallelization on columns
of the data matrix X.

3.2 Convergence of the Proposed Method

Without loss of generality, we assume that the learning rate equals 1 in the
following analysis. We alter the convergence theorem in [10] and prove similar
results of perceptron with soft-thresholding, and analyze conditions under which
the soft-thresholding version perceptron converges. Assume that the ¢-th mistake
happens on example (x,y). Let Jo = {jlz; = 0} and J; = {j|z; # 0}. Then
w®

w§-t) and w Y for j € Ji. By Algorithm 1 and Eq. (10),

= w§t71) for j € Jy and we can only pay attention to the difference between

w® = 5w \) = S(wltD 4 yx, \)

Project w=1_ w(*) and x onto Jy and J; respectively, and let the projection
of a vector v denoted by the vector with the index set as its subscript (for
example, x;, means keep the elements on indices in Jy unchanged and set the
other elements to zero). By simple algebra, w(®) can be decomposed into the sum

(t)

of two orthogonal vectors w(t) = W(t b +w;’ . We have the following lemma.

Lemma 2. Assume that V(x,y) € Z, ||x|| < R. Let JJ(:) denote the set {j :
10| > AynJy and T be the set {5 - |@\”] < A}y Let € = AS 0 )+
S o [0 I < 072, w2 < tR2.

Proof. Prove by induction,

(t

1 1
w2 = [lwE D+ w12 = w12+ w12

1 ~ (t t
< w2 4 w22 - (11)
1 t—1 t
= |wl~ >||2+||w5,1 D yx||? = Y (12)
t—1 t—1
< w2 = €D 4 w2 x| + 27 (13)
< [|w D)2 + R2 — Py or (14)

Inequality (11) follows from the fact that at each iteration ¢, w(®*) suffered from
at least e( )
(w,yx) < 7. Since 7 < €\ /2, then [w®||2 < w12 + R,

of shrinkage. Inequality (13) holds because update occurs only when



Discussion We assume the condition 7 < eE\t) /2 for the convenience of proof. If
7 = 0, then the condition is satisfied for VA > 0. Particularly, if A is set too small,
then the algorithm asymptotically becomes Perceptron; By using a large A, one
can achieve a sparser model with sacrifice of accuracy. This is a more general
problem of model selection and one need to trade off sparsity for accuracy[11]. In
the experiment, we choose the parameters A\ and 7 via validation, then they’re
fixed during iterations.

We proved the above lemma without considering numerical errors. Let the
machine precision be eps = 27". Soft-thresholding introduces errors if A and
the truncated elements are rounded-off. This gives an error up to |e1| < 2eps
which is minor and can be ignored. Note that ||w®|| usually grows with the
iterations, thus more importantly, we must consider the numerical errors associ-
ated with this term. With |es| < eps, the exact term ||W951_1) +yx||? in Eq. (12)

becomes [|(1 4+ 62)(W(Jt;1) + yx)||? and can be approximately upper-bounded by

(||W(Jt;1) 12+ |lyx||* +27)(1 + 2e2) by ignoring the higher order term €3 (an exact

upper-bound should be (||wf]t171) 12+ |lyx||? +27) (1 +2e2 +£3) ). Substitute this
error into Eq. (12), we can prove the following theorem, which is the key to the
convergence proof.

Theorem 1. Given A > 0, let €5 = min, eg\t), then |[w®|? < tR? holds, ¥
t € Z* such that

€y — 27 _ 2_7'

~ 2e0R?  R?

(15)

Proof. The inequality (14) becomes

w2 4R — & + 27 + 2ea(|| w7V + [lyxc]2 + 27)

As in the proof of Lemma 2, we need to prove that the under-braced sum is
smaller than R2. Since by induction, |\w851_1)|\2 < w12 < (t — 1)R? and
lyx||? < R? by assumption, we need only to prove that

—eh + 27 + 269 (tR* +27) <0
Solving for ¢ gets the conclusion.

In C++, e2 &~ 107! in double-precision. If we set A and 7 such that €} — 27 is
not too small (for example, in the order of o(R?)), then |w(®||? < tR? holds for
a sufficient large ¢ in a reasonable training process.

Theorem 2. Assume for all examples x; € Z, ||xi|| < R. If there exists a
linear model u such that ||ul| =1 and 0 < ey < 1 such that ((yix; —v),u) >
(1 —exq)y forV(x,y) € Z and any v, ||V|le < A, then the number of mistakes
made by the online perceptron algorithm on Z is at most k = (R/(1 — €x)7)>.



Proof. For any t satisfying Eq. (15),

w® u=wltY  ut (AY 4 yx;) - u (16)
>wt D ut (1—eq)y

where A®) = S(w® \) — w®. Thus w® - u > (1 — €, ,)tv. By Lemma (2),
w2 < 1.
(1-e )ty <w? u<|w?] < ViR

This theorem indicates that if data in Z can be separated with margin at least
7, and this margin does not shrink too much compared with v (up to € )
given the examples are soft-thresholded, then the Algorithm 1 needs at most
(R/(1—é€x~)7)? examples among Z to learn a linear classifier consistent with all
examples in Z. For the inseparable case, according to the method in [4], one can
extend all the examples x to x’ and the linear model u to u’. In this extended
space, (x,y) is linearly separable by u’.

3.3 Generalization Error Bound of the Proposed Method

In Algorithm 1, features enter the model only when necessary. Such strategy
also allow us to construct a consistent classifier using a subset of the training
set. Combining these two properties, it is possible to learn a sparse model with
generalization error guarantee. Algorithm 1 can be seen as a compression scheme
[9] consisting of two mappings. The first mapping £ maps any training set Z of
size m to Z; C Z, called the “kernel” of Z, where k is the kernel size. The
second mapping 7w uses Zj to reconstruct the labels of all the examples in Z.
k can be seen as an algorithm, learning from m training examples and encod-
ing the produced hypothesis h using only £ of them. The mapping 7 requires
that h is consistent with all the training examples. An algorithm with the data
compression property is guaranteed with generalization error bound [9].

Lemma 3. For any compression scheme with kernel size k, the probability that
the generalization error of the learned hypothesis (with respect to distribution D)
being larger than € is less than () (1 — €)™~k

With a smaller k¥ where & < |m/2], the bound on generalization error becomes
smaller. Combining Theorem 2 and Lemma 3, with high probability over the
randomly drawn training set Z, the soft-thresholding perceptron algorithm can
obtain a classifier wy of good generalizability using only k examples out of the
total m training examples.

Theorem 3. With probability at least 1—6 over the random draw of the training
set Z of size m, given the conditions in Theorem 2, the generalization error of
the classifier found by the proposed algorithm is less than

ﬁ (m (’Z) +1In(m) +In %) (17)

where k = (R/(1 — €x4)7)? for some 0 < €y < 1.



Table 2: Description of classification tasks. Columns sequentially show the task ids,
the tasks’ names, the size of the training sets (#7Tr), validation set (#Valid), test set
(#Test) and number of total features (#Dim)

No. Task #Tr #Valid #Test #Dim
1 comp_vsrec 4278 1644 2948 21317
2 comp_vssci 4248 1766 2829 22944
3 comp.vs_talk 3960 1577 2607 24178
4 rec_vs_talk 3456 1423 2353 23253
5 sci_vsrec 3772 1598 2561 22839
6 sci_vs_talk 3397 1445 2363 24777
7 revl 20242 3357 6854 47236
8  webspam 50000 4999 50000 16609143

Proof. The kernel size of the model learned from Z by the soft-thresholding
algorithm is bounded by k = (R/(1 — €x~)7)?, for some 0 < €\, < 1. By

Lemma 37
m k m (k Ye
_ ek <« m
(k>(1 €) <k)e (18)

Let the right hand size of the above inequality equal to § and solve for €, we
obtain the conclusion.

This theorem is similar to the results given in [7] where the perceptron algorithm
is run in the dual form and the output is a linear classifier in the kernel space.
The difference is that the dual perceptron algorithm needs to store k training
examples for prediction while the proposed method stores only a sparse vector.

4 Experiment

In this section, we present experiment results of the proposed and other methods,
focusing on the numerical stability and efficiency of sparse models. After briefing
the experiment settings, three subsections address the problems listed below:

i Does it converge when applying gradient descent directly on real-world data.
ii How numerical unstability affects MDA’s convergence and model accuracy.
iii To what extent of sparsity can one achieve with performance guarantee.

4.1 Experiment Settings

We conducted experiments on three datasets. The first dataset is 20newsgroups,
from which we construct six binary classification tasks. We used word vector
representation with TFIDF weighting. The seventh and eighth tasks are con-
structed from rcvl and webspam datasets, respectively. Note that the webspam
dataset is from Pascal Large Scale Learning Challenge3. See Table 2 for details

3 http://largescale.first.fraunhofer.de/instructions/
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of tasks. We compared 4 baselines with the proposed method, focusing on nu-
merical stability, model sparsity and accuracy. The baselines are: GraDes [5],
SMIDAS (Stochastic Mirror Descent Algorithm made Sparse), SCD (Stochastic
Coordinate Descent) [12] and TG(Truncated Gradient) [8]. We next demonstrate
the numerical problems of GraDes and SMIDAS, shown in Section 2.1 and 2.2.

4.2 Numerical Problems of Direct Gradient Descent

The GraDes algorithm attempts to find a sparse solution for the least squared
error regression problem using ¢y regularization. The accuracy of GraDes is not
directly comparable to the proposed method due to the difference of the loss
functions (GraDes uses squared loss while other three use logistic loss in our
experiments), therefore we report the numerical problem of GraDes without
comparing to other algorithms. As we analyzed in Section 2.1, for the direct
gradient descent method to converge, one should keep the spectral radius of the
iteration matrix M less than 1. For GraDes, though by sparsification using hard
thresholding function (Eq. 6), the iteration can still diverge.

In practice, it is unrealistic to verify that the spectral radius of M is less than
1. This is restricted by the space and time complexity (M is a dense matrix in
size of O(d?)). For instance, in one of the authors’ machines with 2GB memory,
MATLAB ran out of memory when computing the largest eigenvalue of a 20000 x
20000 matrix. It costs even more if we have to compute the spectral radius of



Table 3: Distribution and statistics of exponents

p in Eq. (8) p = 2In(d) p=0.51n(d)
range within mean4std [within mean+std
comp_vs_rec | 0.095 -80.3+23.6 | 1.000 -12.747.2
comp_vs_sci | 0.258 -69.8432.4|0.999 -15.4+7.1
comp_vs_talk| 0.282 -78.6£43.1|0.996 -17.2+9.1
sci_vs_rec | 0.381 -63.6+29.4 | 1.000 -14.3+6.1
scivs_talk | 0.273 -69.3£26.9 | 1.000 -16.0+£5.9
rec_vs_talk | 0.347 -68.44+33.7|0.999 -15.847.5
revl 0.012 -136.8+32.6| 0.998 -26.3£6.5
webspam NA NA 0.976 -71.4+22.1

the thresholded iteration matrix D ;i) M to decide how to truncate w(®) to w®).
For the above 20newsgroup tasks, we reduce the number of features to around
5000 during text preprocessing while keeping the number of examples the same.
Then we compute the top eigenvalues of the iteration matrices D ;i M at each
iteration. |J(*)| is set to 2000 and the elements of J®) are determined by the
GraDes algorithm, D ;. is the identity matrix. According to [], v is set to 3 and
100, respectively, Note that the learning rate is 1/, thus we have two different
learning rate settings. The spectral radii are plotted as a function of the number
of iterations ,under two learning rates, as shown in Fig. 1 and Fig. 2.

One can easily observe that the spectral radius is far more than 1, indicating
a fast divergence speed of the solution. For example, in Fig. 1, before the first
iteration, the iteration matrix M has a spectral radius at least 7.5x10% (task
“comp_vs_rec”, shown in the red line with plus “+”). Although in the first iter-
ation, the spectral radii are reduced by the hard thresholding function, they are
still in the scale of 103. Moreover, the spectral radii increase as the algorithm
proceeds. The radius of the iteration matrix for task “comp_vs_rec” increases
from about 6 x 102 at the first iteration to about 7 x 10% at the 10-th iteration.
All the other spectral radii increase to some extent and remain above 103. Fig.
2 shows similar situations, the spectral radii are over 160. The large spectral
radii of the iteration matrices indicate that the solution should go beyond the
optimal solution and therefore increase the potential function. To show this, for
each iteration of GraDes, we compute the the value of ¥(w), which is expected
to be reduced by the algorithm. However, the potential function values also go
up quickly. In Fig. 3 and Fig. 4, for the 6 20newsgroups tasks, we plot ¥(w) in
logyp scale at each GraDes iteration under two settings of . The scales climb
up linearly, indicating an exponential increase of ¥(w).

4.3 Numerical Problem of Mirror Descent Algorithm

We show the evidence of the numerical problem leading to the low accuracy
of MDA. Typical IEEE 745 double precision floating numbers have at most 52
bits in the mantissa. If p in Eq. (8) is set too large, then small difference in



exponents of §; would be greatly amplified in w;. Adding two binary numerals
with difference in exponent larger than 52 would cause the smaller one to be
truncated. Usually, elements in one example of the data are normalized to be
in the same scale, such as in the range of [0, 1], the great disparity between
exponents in the weights would cancel out parts of the data.

For each task, we trained a model with 40% of density (i.e. the percentage of
non-zeros in the model, with 100% density we include all features in the model)
using SMIDAS. p is set to 21n(d) and 0.5In(d), respectively. For the last task,
the density is set to 0.1% due to the large number of features (over 16 millions),
and p ~ 33 when p = 2In(d), this will obviously cause data truncation when
computing inner products. Thus we only report results when p = 0.51n(d) for
this task. We calculated the exponents of w; in 2-based numeric. Denote the
largest exponent by e,,. We showed in Table 3 the ratios of exponents falling
within [e,, — 51, e;,] (the column “within”). The columns “mean=+std” show the
means and standard deviations of exponents. As we can see, for p = 2In(d),
most of the w; have their exponents out of [e,, — 51, e,,]. During prediction,
the corresponding features of these elements in the data are totally truncated,
therefore the models SMIDAS produce lack of sufficient discriminability and
lead to poor performance (black lines with empty squares in Fig. (5)). The
standard deviations are large, indicating a wide dynamic range of exponents.
For p = 0.51n(d), SMIDAS approximates the normal gradient descent [6] and
produces more reasonable models. Most of the exponents are in the range of
[em — 51, €] and the dynamic ranges become much smaller. The performances
go up dramatically, but still inferior to the proposed method (blue lines with
filled squares in Fig. (5)).

4.4 Sparsity and Performance Comparison

We focus on how the performance varies as a function of sparsity, and how nu-
merical problem affects the MDA. The proposed method is compared with three
scalable algorithms, SMIDAS, TG and SCD, all use logistic loss function. We
randomly split all labeled data of each task into training, test and validation
set (see Table 2). The training sets are further randomly shuffled (for task 1-7)
or split (task 8) to create 10 copies of training data. For the proposed algo-
rithm and TG, for each parameter setting, we trained 10 models using these 10
copies and calculated the average performance of the models on validation set.
For SMIDAS and SCD, since they randomly shuffle the examples and features
respectively, only one copy of training data of each task is needed. We chose the
best parameters according to this average performance. Finally we reported the
best models’ averaged accuracy on test sets. All algorithms require a regulariza-
tion parameter A\ to control the intensity of sparsification. With a larger A\, we
expect more sparsity of the model. We tuned A using 0.0001, 0.0005, 0.001, 0.01
and 0.1. For learning rate n needed in SMIDAS, TG and the proposed method,
we varied it from 0.1 to 0.5 with step size 0.1. The proposed method requires
one more parameter 7 determining the minimum margin above which to skip
one instance. 7 was searched using 0.001, 0.01 and 0.1.



To compare the performance with sparsity restriction, we require the per-
centage of the non-zeros in the model (model density) to be at most 40% for
task 1-7 and 0.1% for task 8. We recorded the error rates when the density reach
pre-specified percentages. For all algorithms, we stopped running the program
when they reach density upper bounds, or the maximal scans of training set (10
scans for all tasks). These error rates of each algorithms in 8 tasks are depicted
in Fig. 5. In general, the proposed algorithm achieves lower error rate using
fewer features compared with the other three. Particularly, in task 2, 7 and 8,
though the density of the proposed algorithm went up to 40%, the errors are
consistently lower than other methods. In the rest 5 tasks, the proposed method
stop updating the model before the model is too dense, even when the maximum
number of scans is reached. These not only demonstrated the convergence and
generalizability of the proposed algorithm (see Section 3.2 and 3.3), but also the
sparsity of the models it produces. Specifically, in task 1, the proposed algorithm
converges before the density reaches 30%, with approximately 5% of error rate,
which outperformed the remaining algorithms, even they used 40% of features.
In task 3, the proposed method achieved 5% of error rate at density 20% which
can only be obtained when SCD reached 40% of density, with other two have
their error rates higher than that of SCD. Note that in task 1-7 SMIDAS with
p = 2In(d) was beat by all other 3 methods and itself with p = 0.5In(d). This
showed that SMIDAS is not applicable for approximating the EG algorithm,
especially when the dimensionality is high.

In task 1-6, when d and m differ by at most one order, TG converges slower
than SCD. SCD adds features according to global information provided by all
training examples, while TG works based on stochastic gradient. This is inac-
curate compared with SCD. However, in task 8, when d are several order larger
than m and sparser model are required, SCD fails to converge before reaching
40% of density. TG converges since it exploits more features than SCD. The
proposed method takes the best of both. For any training example, it is always
possible to reduce the loss following the gradient direction. As long as the current
example does not increase the regret of online learning, we simply hold it out
of the model. In this way, the proposed method achieves better generalization
ability with a higher degree of sparsity.

5 Conclusions

We addressed several problems in existing sparse learning methods. Though RIP
provides theoretical guarantee to recover the sparse solutions, it is mostly satis-
fied by designed matrices in compressive sensing, rather than data collected in
the real world. Failing to meet RIP can cause matrix iteration-based gradient de-
scent to diverge [5], while £y constraint doesn’t solve the problem. Second, though
MDA using Bregman divergence enjoys fast convergence and approximates the
EG algorithm, its update rules produce inaccurate models when dimensionality
is high. Lastly, ¢; regularization is insufficient for finding an sparser solution, in
several existing methods, density of model grows faster than necessary.



We have proposed to combine the perceptron algorithm with soft-thresholding.
The algorithm converges with numerical error taken into account. We have also
provided generalization error bound of the algorithm. Finally, the algorithm is
highly scalable, data access can be distributed on a per-feature basis, making it
more suitable for real-world applications. Experiments have shown that the pro-
posed method outperformed 4 existing sparse learning algorithms in numerical
stability, accuracy and model sparsity control. In one task with approximately
3.5GB of training data (16 million features, 50k examples), the proposed ap-
proach achieved 5.9% error rate using model with 0.8% density. But the best
competing approach (TG for this dataset) can only get 8.2% error rate, using
model with 0.7% density.
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Fig. 5: Comparison of accuracy



