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ABSTRACT

In multi-label classification in the big data age, the number of classes
can be in thousands, and obtaining sufficient training data for each
class is infeasible. Zero-shot learning aims at predicting a large
number of unseen classes using only labeled data from a small set
of classes and external knowledge about class relations. However,
previous zero-shot learning models passively accept labeled data
collected beforehand, relinquishing the opportunity to select the
proper set of classes to inquire labeled data and optimize the perfor-
mance of unseen class prediction. To resolve this issue, we propose
an active class selection strategy to intelligently query labeled data
for a parsimonious set of informative classes. We demonstrate two
desirable probabilistic properties of the proposed method that can
facilitate unseen classes prediction. Experiments on 4 text datasets
demonstrate that the active zero-shot learning algorithm is supe-
rior to a wide spectrum of baselines. We indicate promising future
directions at the end of this paper.

INTRODUCTION
In some real world applications such as image, text and video

classification, it is not uncommon to have tens of thousands of
classes to predict. It becomes extremely difficult for traditional clas-
sification methods to learn the mapping from data and each and
every class, as collecting training data for all classes is simply in-
feasible. For example, when one wants to identify many potentially
useful tags for online contents like blogs, videos and images, it is
markedly laborious to exhaust all possible tags and assign each
piece of content to its relevant classes. Therefore, many classes
will not have labeled data and traditional classification models will
fail. Zero-shot learning utilizes external knowledge bases describ-
ing class relations to predict classes that do not have any training
data (the “unseen classes”) [5, 7, 9]. Usually, zero-shot learning al-
gorithms first map instances to intermediate attributes, which can
be seen classes (those with labeled data), human-specified or data-
dependent attributes. Then the predicted attributes are mapped to
a large number of unseen classes through the knowledge bases. In
this way, prediction of unseen classes become possible and no train-
ing data is necessary for those classes.

Zero-shot learning has been studied for more than a decade [1]
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from various aspects. Two fundamental zero-shot paradigms, direct
attribute prediction (DAP) and indirect attribute prediction (IAP)
are given in [5]. More sophisticated zero-shot models are proposed,
such as max-margin semi-supervised learning to exploit the unla-
beled data [6], and multi-view zero-shot learning utilizing multiple
data sources [3]. Multiple knowledge bases such as WordNet [7,
12], Wikipedia [2, 9], web search logs [8] and human-annotated
images [5] are compared. The authors in [2, 9, 13] propose to learn
the intermediate attributes using deep learning.

Although the zero-shot learning literature has addressed some
of the crucial issues, most existing works assume that a zero-shot
model can only passively learn from labeled data collected for a
pre-determined and fixed subset of classes [6, 9]. However, given
the ever-increasing amount of online contents, potentially hundreds
of thousands of classes can be identified. It is infeasible to tag large
amoutn of relevant contents for each class, while which classes
have higher priority to be tagged is a question. Instead, one has to
actively decide which classes are the most useful to collect labeled
data to train a zero-shot model to predict the remaining classes.
The key is that complex dependencies exist among classes such
that some classes provide more global information about the other
classes, and unseen class predictions can benefit from the “prop-
erly” selected seen classes. The work [10] proposed a representa-
tive class selection strategy. Our experiments shows that represen-
tativeness is not a proper metric for seen class selection.

To solve the above challenges, we propose to actively select a
parsimonious set of informative classes to collect labeled data, and
keep the large number of remaining classes unseen to save label-
ing efforts. Traditional active learning strategies query labels of in-
stances for all instead of some classes [11], and the effectiveness of
the learning methods is not related to the seen-unseen class connec-
tions, which we study here. We formulate zero-shot learning as a
two-phase procedure, corresponding to which the informativeness
of a seen class can be characterized by its discriminative power
(accuracy) and the information it provides for the unseen classes
(connectivity) via the external knowledge base. The proposed strat-
egy exploits the entropy of inter-class similarities to measure the
above two aspects of a class. We discover that the inter-class simi-
larity follows a beta distribution, based on which we further reveal
the relationship between the entropy and the probability that an un-
seen class is sufficiently connected to the seen ones. Extensive ex-
periments on 4 text classification datasets with up to thousands of
classes show that by obtaining labeled data for a small number of
classes, we are able to significantly improve the unseen class pre-
diction, compared with other active class selection strategies.



THE PROPOSED APPROACH
Let the set of d seen classes be denoted by S and the set of k

unseen ones be denoted by U . Without loss of generality, assume
that the seen classes are indexed by {1, . . . , d}, and the remaining
unseen classes are indexed by {d+1, . . . , d+ k}. Training data is
given by D0 = {(x1,y1), . . . , (xn,yn)}, where xi ∈ X = R

p is
the feature vector of the i-th instance and yi ∈ Y = {0, 1}d is the
corresponding seen class vector. Zero-shot learning aims at predict-
ing the ground truth of the k unseen classes z ∈ Z = {0, 1}k for
any test data x ∈ X . The above procedure can be captured by two
mappings: f : X → Y and g : Y → Z such that the composed
predictive model g ◦ f : X → Z has good performance.

We focus on the intelligent selection of d classes to form the
attribute space Y , such that d is small to minimize labeling ef-
forts, and the prediction in the unseen class space Z is optimized.
Since we focus on the effects brought by class split, we fix the other
components: the mapping f :X $→ Y consists of multiple logistic
regression models, each of which predicts one and only one seen
class; a class similarity matrix K is derived from a related corpus
as the knowledge base. Given two index sets I and J , let KIJ

be the sub-matrix of K that consists of the rows indexed by I and
columns indexed by J . Then KUU is the similarity matrix for the
unseen classes, and KUS

ij being the similarity between the i-th un-
seen class and the j-th seen class. One can view K as the adjacent
matrix of the graph G = (V, E), where V is the set of all classes
and the edge weights are the class similarities. Given the above no-
tations, with ŷ ∈ R

d being the predicted seen classes, the mapping
g is defined by g : ŷ $→ KUS ŷ.

Methodology
Intuitively, we want to select an unseen class that can convery

more information about the remaining unseen ones, and make it a
seen class. The connectivity between the i-th unseen class and the
remaining ones can be a measurement of the amount of information
conveyed. Such connectivity can be calculated by various centrality
metrics of the i-th node on the sub-graph of G consisting of all the
curent unseen classes. The degree centrality of the i-th unseen class
is one such measures and can be calculated as

∑k
j=1

KUU
ij , where k

is the current number of unseen classes. We then select the unseen
class with the largest degree centrality as the next seen class (this
selection strategy is called “max-deg-uu”). One possible drawback
is that, the i-th class can be connected to only a small number of
unseen classes with high weights KUU

ij , but not connected to others.
Selecting this class will not add much information about the unseen
classes that are not well connected to this class.

We take a probabilistic perspective and use entropy to character-
ize the distribution of the significant connections between a class
and the others. First, the similarities between each unseen class and
the other unseen ones are normalized to a probability distribution:

PUU = diag( ⊤KUU )−1KUU , (1)

where diag(v) denotes the diagonal matrix with diagonal elements
being the entries of v ∈ R

u, and is the all-one vector. Then we
calculate the entropy of the connections between the i-th unseen
class and others, i = 1, . . . , k:

H(i) = −
u∑

j=1

PUU
ij logPUU

ij . (2)

We select the class that have the highest entropy, acquire labeled
data for that class, and move it from U to S. The labeled instances
for the selected classes are used to train a prediction model, which
is added to the mapping f . This selection procedure is repeated
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Figure 1: Analysis of seen-unseen tag split resulting from the
proposed selection method

until the labeling budget runs out. Lastly, we obtain the zero-shot
model consisting of f and g. The algorithm is shown in Algo-
rithm 1. Intuitively, the larger the H(i), the more classes in the pool
of unseen classes are connected to the i-th unseen class, which shall
have the highest utility to be added to the pool of seen classes. An
extreme case is that there is only one unseen class connected to
the i-th unseen class (not counting self connection), then the i-th
unseen class is not providing information to the remaining unseen
classes and shall not be selected. Formally, we want to minimize
Pr(j ̸∈ Cj(s), ∀s ∈ S)), the probability that j-th unseen class that
is not well connected to any seen class. Let Cj(s) be the event that
the j-th unseen class is well connected to the s-th seen class.

Pr(j ̸∈ Cj(s), ∀s ∈ S) =
∏

s∈S

Pr(j ̸∈ Cj(s)), (3)

by assuming that the entries in PSU
sj , s ∈ S are independently dis-

tributed conditioned on j. With a higher H(s), PSU
sj , j = 1, . . . , u

are more evenly distributed (over the unseen classes) and more of
the probabilities Pr(j ̸∈ Cj(s)), s ∈ S will be small, leading to a
smaller Pr(j ̸∈ Cj(s), ∀s ∈ S)).

Algorithm 1 Active Zero-shot Learning

Input: Unlabeled training data {x1, . . . ,xn}, class similarity
matrix K, budget b.
Output: Zero-shot prediction model g ◦ f .
Randomly select seeding classes to form S, and the remaining
classes go to U = {1, . . . , d+ k} \ S.
while b > 0 do

Normalize the sub-matrix KUS by Eq. (1).
Calculate the entropies using Eq. (2).
Select the class (denoted by t) that have the largest entropies.
Query the labels of the training instances for the class t.
S = S ∪ {t}, U = U \ {t}, b = b− 1.

end while

EXPERIMENTS
StackExchange is a QA (questions and answers) system where

members can ask and answer questions. The predictions of zero-
shot learning can be used to prompt users to associate their ques-
tions with tags that have not used by any user (unseen tags), and
thus facilitate question organization and retrieval. We adopt 3 sites
from StackExchange: askubuntu, dba and unix (see Table 1). Bag-
of-words representation with TF-IDF transformation is used as the
feature vectors of the questions. Each tag is treated as a class, and
a question can have multiple tags, so the tasks can be formulated
as multi-label classification problems. Only those tags that appear
in at least 10 questions are kept. Tags provided by the users for



Table 1: Datasets

askubuntu dba unix
# Training 55684 12070 23069
# Test 55883 12211 23025
# Tags 1003 345 775

the questions are used as ground truth. Each selection strategy is
tested on 20 randomly picked seeding seen classes, and we report
the averaged performances over 20 runs. Questions are randomly
split into disjoint training and test sets. The training data is used
to train classification models (Liblinear with default settings), each
of which maps from features to a seen tag. Then we map the pre-
dicted seen classes on the test data to unseen classes via a knowl-
edge base, which is an embedding of the tags in a low dimensional
space via restricted Boltzmann machine trained on the text corpus
of questions. Tag similarity is calculated through a kernel function:
K(t1, t2) = exp(∥t1 − t2∥

2/σ2) where t1 and t2 are the low
dimensional representations of two tags, and σ = 10 throughout
the experiments.

We adopt 3 common metrics (precision@5, NDCG@5 and micro-
AUC) to evaluate the performance of tag retrieval. Since there is no
previous study on active zero-shot learning, we compare max-ent-
uu with the following baselines that capture different aspects of
seen-unseen class splits.

• max-deg-uu: as mentioned in the methodology section, this
method labels data for the classes that have the highest de-
gree centrality.

• min-deg-us: we take the row sums of the matrix KUS , which
captures the total similarity between unseen tags and seen
tags. The unseen class with smallest row sum is picked. The
intuition is that unseen tags that are farthest away from the
current seen classes can provide complementary information
to the current seen ones.

• uncertainty: uncertainty-based sampling queries the labels of
the top unseen classes that has the highest entropy in their
predictions on the training data, according to the current class
split. This baseline runs in an incremental manner as max-
ent-uu and min-deg-us.

• matrix: in [4] the author proposed a matrix partition algo-
rithm to split a set of instances into two such that the mutual
information between the distributions of the two sets is maxi-
mized. This method is considered to be a representativeness-
based active learning method. We adapt their model and treat
classes as instances. This algorithm runs in batch-mode and
we only report its performance when 100 additional classes
are selected.

We set the number of unseen classes selected in each iteration to
2 (c = 2) in Algorithm 1 and the other iterative baselines. We test
other values for this parameter (c = 5 and c = 10), and find out
that c = 2 gives the best results.

Results In Figure 2, we show how the zero-shot prediction per-
formances of 4 iterative algorithms evolve as more seen classes are
added, plus the batch-mode method matrix. Each row in Figure 2
consists of 3 sub-figures showing the performance in precision@5,
ndcg@5 and micro AUC, respectively. In each sub-figure, the per-
formance of max-ent-uu (shown in green solid lines), is compared
with those of the 4 baselines. From the figures, we can see that
across all datasets and all metrics, except that in Figures 2(c), max-
ent-uu consistently outperforms all the baselines. In some cases,

max-ent-uu ends up with performance two times better than the
runner-up (Figures 2(g) and 2(b)). The baselines min-deg-us, un-
certainty and matrix consistently have performance between those
of max-ent-uu and max-deg-uu in 8 out of 9 cases.

Surprisingly, the seemingly naive method min-deg-us can gradu-
ally pick up its performance and ends up with similar or better per-
formance with the more sophisticated methods matrix in the dba
and unix datasets, although its performance at the beginning is not
very impressive. Our explanation is that by selecting the classes that
are least similar to the already picked ones, more information can
be revealed. However, this baseline fails to consider unseen class
coverage information, and the selected classes may not be well-
connected to the large clusters of unseen classes (as we will see
next), leading to less effective seen-to-unseen class mapping. Fur-
thermore, the performance of matrix is quite close to uncertainty
in all cases. Our conjecture is that by picking the current unseen
classes that do not have confident predictions, uncertainty is able
to explore the class space that has not been explored before, and
ends up with a seen class space that represent the whole class space
quite well, which is what matrix aims for.

Analyzing the seen-unseen classes relations Here we empiri-
cally shows why the proposed method works via the analysis of
the resulting seen-unseen connection matrix KUS . In Figure 1(a),
we plot the CDFs of the frequencies of the selected classes that
appear in the training instances (namely document frequencies) on
one dataset (best viewed in color). We can see that among the 5
strategies, the max-deg-uu tends to select classes that have higher
document frequencies than those selected by max-ent-uu, as the
CDF of max-deg-uu is more shifted to the right. It has been shown
in text classification that, the more frequent a word appears in the
corpus, the less informative it is, as evidenced by the commonly
used tf-idf transformation. A frequent seen class is likely to be pre-
dicted more often by predictive models that takes into account of
the class prior distribution. Such seen class become a less discrimi-
native feature when used as features for the mapping g. This partly
explains why the baseline max-deg-uu has the worst performance
in 10 out of 12 cases among all methods.

From Figure 1(a), we see that the baseline min-deg-us also tends
to select classes that are less frequent than those selected by max-
ent-uu, then why hasn’t min-deg-us outperformed max-ent-uu? In
Figure 1(b), we plot the CDF of the seen-unseen class connectivi-
ties on the same dataset, where connectivities are the row sums of
KSU . We see that max-ent-uu produces connectivities as strong as
those produced by max-deg-uu. The seen classes selected by min-
deg-us tend to have low connectivities with unseen classes, and the
baselines uncertainty and matrix produces medium connectivities.
If the connectivities are strong, then the seen classes can provide
significant information about the unseen classes. We have similar
observations on the other datasets, and we conclude that max-ent-
uu is more likely to find seen classes that simultaneously possess
the following properties: 1) discriminative about the test data (low
document frequency) and 2) informative about the unseen classes
(high coverage). The unique combination of these two properties
helps max-ent-uu outperform the baselines.

CONCLUSIONS AND FUTURE WORK
We study active learning in the zero-shot prediction setting for

the purpose of finding a small number of informative seen classes
to facilitate unseen class predictions. We propose an entropy-based
selection method, which is demonstrated to be able to capture the
desirable distribution of seen-unseen similarity. Experiments show
that the proposed method outperform both representativeness and
uncertainty based active learning methods. In the future, we plan to
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Figure 2: Comparisons of the proposed method and the baselines

explore more selection strategies based on other zero-shot learning
properties. Further reducing the labeling efforts by instance select-
ing is also a promising direction.
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