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ABSTRACT

In big data applications such as healthcare data mining, due
to privacy concerns, it is necessary to collect predictions
from multiple information sources for the same instance,
with raw features being discarded or withheld when aggre-
gating multiple predictions. Besides, crowd-sourced labels
need to be aggregated to estimate the ground truth of the
data. Because of the imperfect predictive models or human
crowdsourcing workers, noisy and conflicting information is
ubiquitous and inevitable. Although state-of-the-art aggre-
gation methods have been proposed to handle label spaces
with flat structures, as the label space is becoming more and
more complicated, aggregation under a label hierarchical
structure becomes necessary but has been largely ignored.
These label hierarchies can be quite informative as they are
usually created by domain experts to make sense of highly
complex label correlations for many real-world cases like pro-
tein functionality interactions or disease relationships.

We propose a novel multi-source hierarchical prediction
consolidation method to effectively exploits the complicated
hierarchical label structures to resolve the noisy and con-
flicting information that inherently originates from multiple
imperfect sources. We formulate the problem as an opti-
mization problem with a closed-form solution. The pro-
posed method captures the smoothness over all information
sources as well as penalizing any consolidation result that vi-
olates the constraints derived from the label hierarchy. The
hierarchical instance similarity as well as the consolidation
result are inferred in a totally unsupervised, iterative fash-
ion. Experimental results on both synthetic and real-world
data sets show the effectiveness of the proposed method over
existing alternatives.

1. INTRODUCTION

For various tasks such as crowdsourcing, healthcare data
mining in big data applications, multiple information sources
may provide labeling information on the same instance si-
multaneously. For example, in crowdsourcing tasks, multiple
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human annotators are asked to find labels of flowers given a
beautiful nature image. On online healthcare forums, a pa-
tient who posts a question regarding his/her symptoms may
receive disease names as suggestions from multiple doctors.

Once we obtained the labeling information from multiple
information sources or human beings, it is necessary to con-
solidate the collected information to infer the ground truth
labels. Because imperfect information from a single infor-
mation source exists ubiquitously, it is also important that
labeling information from multiple sources need to be con-
solidated to resolve noises and conflicts. Moreover, due to
privacy concerns, raw features of instances are often dis-
carded or withheld and only labels are available for aggrega-
tion purposes. For example in online healthcare forums, the
raw features of a patient need to be discarded for privacy
concerns and only diseases names collected from multiple
doctors are consolidated to infer the ground truth.

In those applications, instead of assigning a single label
for each instance, it is usually more informative to associate
an instance with more than one labels to characterize mul-
tiple categories or properties an instance has. For example,
an image instance can be described by multiple tags such as
“monarda”; “bird” and hence belongs to multiple categories.
A protein can be associated with more than one functions,
denoting various functionalities. A patient may be associ-
ated with several candidate diseases, each of them diagnosed
by a doctor.

Typically, those tasks consider all the labels on the same

“flat” level. However, it is still insufficient to measure the
value of the informativeness of labels when we isolate labels
with each other and ignore the correlations between labels
. A better way is to organize labels in a hierarchical taxon-
omy. In this way, besides correlations such as co-occurrences
between all the “flat” labels, a label hierarchy contains rich
information to make sense of highly complex label correla-
tions.
Problem Studied: In this paper, we want to incorporate
the label hierarchy into the prediction consolidation process
when only the labeling information from multiple informa-
tion sources are available, which is formally defined as the
Multi-source Hierarchical Prediction Consolidation(MHPC)
problem, illustrated in Figure

Informative label hierarchies are prevalently observed in
various applications. For example, in crowdsourcing for
protein functionality annotation, the functional labels of a
protein are in a hierarchy, representing the functional re-
lations. In healthcare data mining, disease labels can be
also constructed as a tree-like disease taxonomy, denoting



Source 1: {monarda, bird}

“ {monarda, hummingbird}

Source 2: {fuchsia, hummingbird}

Figure 1: An illustrative example of multi-source
hierarchical prediction consolidation problem. Two
individual information sources give label predictions
to an image and MHPC tries to find a consoli-
dated label prediction that maximizes the consensus
among these predictions while preserving the struc-
tures of the label hierarchy.

the pathology structure of human diseases. Current works
in the literature try to consolidate predictions from
multiple information source. However, those works have ac-
cess to raw features of the data and they totally ignore the
hierarchical information. Simply ignore the label hierarchy
may lead to potential loss of valuable information .

With a number of approaches proposed to exploit the la-
bel hierarchy for various tasks @ such as classification
or clustering @7 it is reasonable to believe that informative
label hierarchies, which inherently come with many predic-
tion consolidation tasks, are also able to offer auxiliary and
valuable information for the MHPC problem. For example,
the conflicts between two label predictions in Figure [I| can
be resolved by mapping label predictions to level 2, where
we have {flower, bird} for both label predictions. Moreover,
the label hierarchy may provide some constrains so that la-
bel predictions which violate the hierarchical structure will
be less useful.

Given the importance of incorporating the label hierar-
chy, the MHPC problem itself is a novel problem which is
rarely studied. Various learning problems are summarized
in Figure where model-level ensemble learning
tries to aggregate labels at the output level and hierarchical
multi-label learning exploits the label hierarchy to improve
the model performance on a wide range of multi-label learn-
ing tasks . The multi-source hierarchical prediction
consolidation problem is an unsupervised ensemble learning
problem that aggregates hierarchical multi-label predictions
on the model-level, where very few work has been done.

Model-level
Ensemble Learning

Classification Ensemble
Clustering Ensemble

Consensus Maximization

Figure 2: Position of the multi-source hierarchical
prediction consolidation problem.

Despite the importance and novelty, the multi-source hi-
erarchical prediction consolidation problems are challenging
to solve due to:

e Label vagueness: label vagueness usually originates
from imperfect predictive models or insufficient knowl-
edge of information sources. When an information
source has insufficient knowledge or high uncertainty,
vagueness is commonly observed where a vague, gen-
eralized label is used instead of a mandatory, specific
label prediction. For example in Figure [I] instead of
having a specific type of flower (e.g. “monarda”) as
the label prediction, which is the leaf node in a label
hierarchy, usually a more generalized label “flower” is
used when the information source doesn’t know much
about flowers. Leaf node predictions are more likely
to be error-prone when they are mandatory provided
under insufficient knowledge. As the label vagueness
is widely observed, how can we exploit the rich infor-
mation encoded within label hierarchy to resolve the
vagueness?

e Label ambiguity: in most cases, the predictions we
collect from multiple information sources are noisy and
conflicting with each other. For instance, in Figure
Source 2 associates a label “fuchsia” to the instance
instead of giving “monarda’;, one of the truth labels.
Those two labels have similar meanings but may be
used interchangeably by different information sources
due to ambiguity. Ambiguous label predictions may

contain erroneous information and hence introduce noises

into prediction consolidation tasks. How should the
prediction consolidation task resolve the label ambi-
guity from multi-source predictions effectively?

e Label sparsity: since an information source may pro-
vide labeling information for a diverse population of
instances, labels in each prediction only cover a very
small portion of the whole, diversified label space. Also,
many of the labels may be only covering a small num-
ber of instances. For example, there can be thousands
of flower names under the node “flower”, but not all
information sources necessarily mention the idea of
“flower” ever. Not all flower names are covered by
all instances as well. The worst case exists when the
truth label of an instance is not provided by any infor-
mation source. That is, for the example in Figure [T}
“monarda” is never mentioned by any of the informa-
tion sources. How to deal with the label sparsity that
comes with the ever-expanding label space as well as
the varying number of predictions obtained from mul-
tiple information sources?

In this paper, we try to solve the MHPC problem by for-
mulating it as an optimization task. The objective function
for optimization favors the smoothness over all information
sources as well as penalizing any two instances which have
high hierarchical instance similarity but conflict with each
other in the consolidation result. We derive a closed-form so-
lution for this optimization problem. After that, the MPHC
algorithm is introduced where two phases, namely estimat-
ing hierarchical similarities and minimizing consensus cost,
are conducted in an iterative, totally unsupervised fashion
to get the consolidated label prediction for each instance.



Table 1: Table of symbols.
Description
Number of information sources
Number of instances
Number of labels in the label hierarchy

RY*E Jabel matrix from source m
RNXK

Symbol

SIS

consolidated label matrix
Label vector for the i-th instance in Y,,

The k-th label of Ym(i)
RNXK

e
N

SH

ground truth label matrix

REXE hierarchical adjacency matrix of labels
where Hy, = 1 when label k is the direct de-
scendant of label k’. Otherwise Hyj = 0.
RY*¥ hierarchical instance similarity matrix

w g o

RY>E Jabel support vector. S is the corre-
sponding support value for label k.

R'*X Jabel occurrence vector. Cy, is the cor-
responding occurrence value for label k in all
augmented label vectors.

al

2. PROBLEM STATEMENT

Before introducing the proposed method, we will give the
definitions of some important concepts and formulation of
the MHPC problem first in this section.

2.1 Terminology Definition

Suppose we are given label matrices Y1, Ya,...,Y ar pro-
vided by M information sources and a hierarchical adjacency
matrix H. An label matrix Y,, is an N by K matrix in-
dicating the labeling information on all NV instances and K
labels provided by the information source m. Within Y,,,
the i-th row Y, (;) is a label vector of instance i provided by
information source m, where lefi> = 1 if the information
source m associates the instance ¢ with label k. A hierarchi-
cal adjacency matrix H embodies the hierarchical structure
for all K labels where Hy,r = 1 if and only if when k is
the direct descendant of label k. Other terminologies are
introduced further when they are used. Table summarizes
the notations.

2.2 Problem Statement

Based on the terminologies defined above, the Multi-
source Hierarchical Prediction Consolidation problem
is formally defined as: given label matrices {Y1,Y2,..., Y}
and a hierarchical adjacency matrix H, the MHPC problem
tries to incorporate the label hierarchy into finding a consoli-
dated label matrix Y which maximizes the consensus among
all label matrices. The maximum consensus is achieved by
minimizing the consensus cost in prediction consolidation.

3. MODELING HIERARCHICAL CONSEN-
SUS

This section describes how we come up with a consolida-
tion agreement of multiple information sources by incorpo-
rating the label hierarchy into the minimization of consensus
cost. Section [3.1] describes the objective function for mini-
mizing the consensus cost as well as its closed-form solution.
Section [3.2] integrates the hierarchical information into the
objective function when estimating instance similarities.

3.1 Minimizing the Consensus Cost

We formulate the following objective function:
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(1)
where | . || denotes the ¢2-norm for matrices and vectors.
The first term favors the smoothness of the consolidation re-
sult over label predictions from all the information sources.
The second term serves as a regularization term which en-
sures that label vectors of any two instances in the consol-
idation result(the i-th and the j-th instance in Y) do not
differentiate themselves from each other very much if they
share a high hierarchical instance similarity W. Estimation
for W will be further explained in Section [3:2} X serves
as a regularization coefficient to penalize violation for the
hierarchical similarity constraints.

Note that the objective function in Equation [I| can be
rewritten in a matrix form as:

T~ T~ T
== Z( (YY) = 2Te (Y "Y) 4+ Te(Y o Ym))+
ATe(YTLY) st A>0,
(2)

where L is the symmetric normalized Laplacian matrix

-

L=D *(D-W)D ? (3)

and D is the degree matrix of W.

To find a Y that gives the minimum value of .J (Y), we
first prove the convexity of J ( ) by showing the positive
definite property of the Hessian matrix of J (Y) with respect
to Y.

2 11
w =2(I+AL) s.t.
0Y?
The Hessian matrix shown in Equation [i]is positive definite
because AL is positive-semidefinite and adding an iden-
tity matrix to it makes the resulting Hessian matrix positive
definite . Therefore, setting the derivative of J(Y) with
respect to Y to zero

A= 0. (4)

M

8J(Y) MZ(2Y 2Y)+2ALS?:0 (5)

oY

leads to a global minimized consensus cost J (Y) given W.
A closed-form solution can be obtained by solving the
Equation [}

[N

Y= (1+AD *(D-W)D )11 i_Y’" (6)

=(I+X-L)'Y,

M
ﬁ > Y., and I is the identity matrix.

m=1

From Equation [6} we can see that hierarchical similarity
constraints are not introduced when A = 0. In this case, the
consolidation result degrades to the simple averaging of all
the label prediction we obtained. While A > 0, the Laplacian
matrix L regularizes the simple averaging result and guides

where Y =



the Y towards a global consensus Y with label hierarchies
being considered.

It is worth mentioning that the formulation of the hierar-
chical similarity constraints as the second term in Equation
[[] and Equation [2] can be also seen as learning an optimal
embedding from a multi-source label space to a consol-
idated label space. The multi-source label space contains
multi-source hierarchical label predictions with noisy and
conflicting labels. While the consolidated label space has la-
bels with less imperfect information as well as a minimized
consensus cost. If Y is such an embedding result, then a
reasonable criterion for a “good” mapping is to have weight
‘W, so that it heavily penalizes two “hierarchically similar”
label predictions ( instances ¢ and j ) for not having “sim-
ilar” label predictions in the consolidated label space after
the mapping.

3.2 Estimating the Hierarchical Similarity

Given any two label vectors, each of which denotes a label
prediction for an instance, an instance similarity matrix W
in Equation [I] measures similarities between label vectors.
We assume that each label has a unique degree of support,
asserting that such label belongs to an instance. Then, the
instance similarity value W;; of any two instance ¢ and in-
stance j can be calculated by the following Equation:

K
1 - . ~ 2
Wi =exp | —— >OSkYE =YEDT ], (7)
k=1

K _, N ~
where [ > Sk(Yﬁ.) — ij))Q in Equation (7| measures the
k=1

weighted Euclidean distance between label vectors of two
consolidated instances in Y, namely Y ;) and Y ;), over all

I_(; labels. S is a support label vector. Each entry §k of
S indicates the degree of support of the label k to the dis-
tance estimation. Note that the support value S can be
seen as how much contribution a label k makes to the over-
all similarity estimation of an instance having that label.
o is a constant factor and the exponential function exp (.)
converts weighted Euclidean distance measurement to a sim-
ilarity measurement.

Usually, we assume that each label has an individual de-
gree of support to the overall similarity estimation. For ex-
ample, in online healthcare forums, each disease label may
have an individual support to a diagnose (each diagnose con-
sists of several disease labels), when we estimate the simi-
larity of two diagnoses. However, as the label space is be-
coming more and more complicated, such simplified assump-
tion totally ignores correlations among labels and therefore
will lead to an inaccurate similarity estimation due to the
label sparsity. For example, there can be thousands of la-
bels for flower names such as “monarda”, “fuchsia” and so
on. However, it is very unlikely that label predictions pro-
vided by various information sources cover all of those flower
names. Also, different information sources may have pref-
erences in providing certain labels so the remaining labels
may be rarely used. Although these labels share the same
general idea (the “flower”), since the support value is calcu-
lated on each label separately, none of those labels is able to
make any contribution to the support value of label “flower”
with which they share the general idea.

The label hierarchy organizes labels in a tree-like struc-
ture in which general labels are the ancestors of specific la-
bels. With a label hierarchy being incorporated, labels are
no longer independent with each other: the general idea is
that when an information source assigns the label k to an in-
stance, the existence of that label reflects a direct occurrence
of this label to support the instance. Moreover, such label
assignment on label k also indicates indirect occurrences, al-
though not explicitly labeled, from its ancestor labels on the
label hierarchy. Therefore, we would like to let the occur-
rence of each label contributes not only to itself, but also to
all its ancestor labels in a label hierarchy.

To make this happen, we first apply the label augmen-
tation algorithm to convert each label vector Ym;) to an
augmented label vector Yim(;), as shown in Algorithm I} By
augmenting the occurrence of a label to its ancestor labels,
occurrences of those augmented labels provide more implicit,
but in-depth labeling information about an instance. The
label augmentation for each label vector can be also seen as
mapping the original label vector to all the ancestor levels
in a bottom-up fashion. Figure [3|illustrates this idea.

Algorithm 1 Label Augmentation

Input: A label vector Y,
A hierarchical adjacency matrix H
Output: An augmented label vector Y**

m (i)

1: function LABELAUGMENTATION(Y ,,(;), H)
2: Initialize Y7, ;) as a zero vector
3: for each k with an(i) =1do
4: t<+ k
5: while t # ROOT do
6: Yoo <1
7: t < t' where Hy =1
8: return Y,
£ ‘
o .
\7-\ \ \7-\ \
Q/ DEP 0/ B \O,
Y, =1 000 0 1 0] Y., =01 10 11 1 1]

m m

Label Vector Augmented Label Vector

Figure 3: A label augmentation from a label vector
Ym() to an augmented label vector Ym?i). By aug-
mentation, the direct occurrence of a label in the
label vector contributes not only to itself, but also
to its ancestor labels in the hierarchy.

We propose to use the occurrence of a label in all aug-
mented label vectors to represent how general information
this label embodies, thus the support value for each label
can be further estimated. As shown in Equation 8] by sum-
ming up the occurrence of each label in all the augmented
label vectors,

N M N
Cr = Z ZYf:(i)- (8)
m=1

i=1



labels close to the root node in the hierarchy are_frequently
augmented, thus have higher occurrence values C'x. Ogcur-
rence values C' are used to calculate support values S for
each label. .

Intuitively, the higher occurrence C value the label k
gets, the more likely that the label k is near the root node
in a label hierarchy. Asserting the belongingness of a label
which is in proximity to the root node to an instance is less
likely to be fallible. Therefore, labels with high occurrence
values makes themselves more supportive in similarity esti-
mation.

The occurrence value of each label over the sum of oc-
currences of all labels in all augmented label vectors can
be quantified to estimate the support value of each label.
However, such estimation can be very inaccurate because
although the label predictions are collected from multiple
information sources, the occurrences of many labels near
the leaf nodes in a hierarchy only share a very small portion
over the sum of occurrences, even after label augmentation.
This leads to very small values for all the labels.

In this work, we model the occurrence of a label in a label
vector with a confidence interval. The occurrence of a label
within all augmented label vectors can be considered as it is
sampled from a subset of a population of labels. The occur-
rence information will be more accurate when we observe
this label more frequently among all the augmented label
vectors, which leads to a narrow confidence bound. Other-
wise, if we rarely observe the occurrence of a label among
all label vectors, the resulting confidence bound will be wide
and it will be more risky to incorporate this piece of occur-
rence information into the support value calculation. By
incorporating confidence intervals, the occurrence value it-
self shows how uncertain we are about the occurrence value
of a label.

‘We use the occurrence value C_"k of label k over the number
of instances N as the proportion. Since the root node will be
activated in all the augmented label vectors, the root node
will have the highest proportion as 1. One label is either
activated or not in an augmented label vector, therefore the
binomial probability distribution is used. The confidence
interval on this proportion can be presented in an alternate
formulation that uses quantiles from the beta distribution

117):
B(%;é’k,,z\/—@'k+1) <6k<B<1—%;5mN—6k+1)» 9)

where B is the Beta distribution and « is the significance
level, which usually has the value 0.05 (5%). 0y is the prob-
ability of a label k being activated in an augmented label
vector. (' is the occurrence value of label k over all aug-
mented label vectors.

By Equation[J] we can know that the less frequent a label
k being sampled, the wider confidence interval it will end
up with. A narrow confidence bound indicates a stronger
certainty during the support value calculation. The lower
bound value of the confidence interval is used to calculate
the support value for each label:

§k:B(%;5k,N—5k+1> (10)
Once we calculate the support value for each label with con-

fidence, the instance similarity matrix W in Equation [7] can
be calculated with the support label vector S we learned

from the label hierarchy. Hence, W is called a hierarchical
instance similarity matrix.

4. CONSOLIDATING HIERARCHICAL LA-
BELS

4.1 The MuPC Algorithm

Although we provide a closed-form solution to find the
global minimum for the consensus cost when the hierarchi-
cal instance similarity matrix W is given, it is still hard to
estimate both ¥ that associates with a minimized consensus
cost J (?) and the hierarchical instance similarity matrix W
at the same time. Hence, we propose a two-phase iterative
algorithm, namely the multi-source hierarchical prediction
consolidation (MHPC) algorithm, that naturally decouples
the computation within each iteration.

The Mupc algorithm has two phases within each iteration,
namely estimating the hierarchical similarity (Section
and minimizing the consensus cost (Section[3.1)). The Mupc
algorithm starts at iteration tp with an initial estimation
for hierarchical instance similarity matrix (W;;), and the

consolidation result (Y) . (Wy;)
to

following equation:

is initialized by the

to

K
1 P = 2
(Wij)to = €xp _; Z Sk(YZ) - Y?j)) 3 (11)

k=1

where Yﬁ-) is the simple averaging result on the k-th la-
bel of the instance i from all M sources, calculated by =

— M =
YZ) = ﬁ > Ykmm. Note that support values in S and
m=1

the occurrence values in C are derived from all the multi-
source label predictions we obtained, which we only initialize
once in the entire algorithm, regardless of iterations. (Y')to
is initialized using the Equation [f]

Once we obtain an initial value for (Wj;), —and (Yo,
each iteration afterwards follows the following updating rules.
Estimating the hierarchical similarity:

(Wij)y, ., =exp <_‘1’\/k§_{:1 §k<<?ﬁ))tw B <ij)>tw) >7 1

where the hierarchical instance similarity (W;)

. is calcu-
x+1

lated by the most up-to-date consolidation results in (Y)
tx
Minimizing the consensus cost:

9, ~ow) @),

where the laplacian matrix (L), is calculated by the most
up-to-date (W), = value using Equation Note that in
Equation the consolidation result in the latest iteration
(Y)¢, is used for updating, rather than Y as shown in Equa-
tion@ With this updating function, the consolidation result
can accumulate the consolidation progresses from previous
iterations. Otherwise, if (Y)¢, is used in Equation we
simply ignore the consolidation results from all the previous
iterations, and L;, is the only factor we can rely on to guide
the consolidation process toward a final consensus. The algo-
rithm terminates whenever the updates on the consolidation
result (Y)tT 41 is no longer significant after an iteration.



S. EXPERIMENTS

In this section, we describe the yeast data sets, the real-
world medical data sets and their label hierarchies respec-
tively. Experiments on yeast data sets illustrate the abil-
ity of the proposed method in overcoming various degree
of label vagueness and ambiguity from multiple information
sources. While the real-world medical data set emphasizes
more on the label sparsity because in real-world medical con-
sultation, we can’t ensure that all the information sources
provide labels to all instances.

5.1 Data description and data preprocessing

5.1.1 Yeast Data Sets

Tableshows statistics about yeast data sets. Each data
set annotates yeast genome from a different aspect. Each
yeast genome is annotated with hierarchical-structured la-
bels in the Functional Catalogue (FunCat) [18]. For exam-
ple, a yeast genome can be associated with three functional-
ities:{20/01/03/01 (sugar transport), 20/03/02/02/01 (pro-
ton driven symporter), 20/09/18 (cellular import)}. The
annotation scheme follows the protein functional descrip-
tion of each genome instance, with up to 6 levels of label
taxonomy. On average, each instance has 8.8 labels.

Based on the ground truth multi-label label predictions,
we introduce vague labels as well as noisy labels to the yeast
data sets to model real-world cases where imperfect predic-
tive models or inexperienced human annotators are involved
in MHPC problems.

The Algorithm [2]is used to generate synthetic label pre-
dictions for each instance on all the information sources. For
each label mentioned by the ground truth label matrix Z, we
generate two random values, py and py (Line 2-4). Given
the label k and a function level(k) indicating which level
label k is in, the vagueness of label makes a label k hops to
its ancestor k' with a probability P(vagueness|level(k)), as
shown by the following Equation

P(vagueness|level(k)) = (Olvague)levd(k) ) (14)

where auague is a parameter and level (k) returns the number
of connections from label k to the root node. Therefore, a
label near the root node of a hierarchy has less probability
to hop to its ancestor label, while a label near leaf nodes
in the hierarchy is more likely to hop. Whenever py >
P(vagueness|level(k)), we replace k with its ancestor label
k’. Note that, with one hop performed, the label k' can be
further hopped to its ancestor label k" as well (Line 5-9).
The left part of Figure [ illustrate this idea.

Once we add the vagueness to the label, when py is greater
than a transition probability

P(noise) = anoise, (15)

noise is introduced by replacing label k£ by one of its sib-
lings randomly (Line 10-11). Otherwise, the label & will not
be changed. The right part of Figure E| shows the way we
add noise to labels.

5.1.2 Medical Data Sets

The medical data set and the disease label hierarchy are
obtained from an online medical consultation website xywy.co
where patients post their healthcare related questions and

"http://club.xyxy.com

Algorithm 2 Generating Multi-source Label Predictions

Input: A ground truth label matrix Z
A hierarchical adjacency matrix H
Output: label matrices {Y1,Y2,...,Yu}.

: function GENERATEPREDICTIONS(Y ,,,(;), H)
for each label k of instance ¢ where Z¥ = 1 do
for each information source m do
Generate two random values pv,pn € [0, 1].
while k # ROOT do
if py>P(vagueness|level(k)) then
k < k" where Hyy =1
else
Break
if pxy > P(noise) then
ke {k/ | dl, Hy = Hk[}
Y 1
: return {Y1,Y2, ..., Yr}
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Figure 4: Introducing vague labels and noisy labels

to generate the synthetic multi-source label predic-
tions.

multiple medical professionals give online suggestions or gen-
eral advice as answers.

Table [3] gives an example of the multi-source label predic-
tions we collect on an instance. Each doctor is considered
as an individual information source. Ground truth disease
labels are obtained by a medical knowledge base in Baidu
BaikeEI(an online encyclopedia of Baidu) where registered
doctors provide knowledge about certain disease names that
closely associate with some symptoms. The disease label
hierarchy is organized in an anatomical structure, with up
to three levels of labels(e.g. disease - otorhinolaryngology -
rhinitis). In terms of the label sparsity, 0.011506% of labels
are activated among label predictions over all instances from
all information sources. Such label low sparsity is common
in data sets like this because not all doctors provide labels for
every instance; not all instances get label predictions from
each doctor. Usually a doctor provides around 2.5 labels to
an instance on average, which leads to a low label coverage
over all labels in a hierarchy.

5.2 Experiment Settings

5.2.1 Comparison Methods

To show the advantages of the MuPC algorithm in solving
multi-source hierarchical prediction consolidation problem,
we compare the MHPC method with many baseline methods.
Considering that no known multi-source hierarchical predic-

http://baike.baidu.com



Data set seq struc hom cellcycle church derisi gaschl gasch2 spo expr
F#training 1701 1665 1669 1628 1630 1608 1634 1639 1600 1639
##validation 879 860 870 848 844 842 846 849 837 849

Table 2: Yeast data sets.

Instance Doctor_id Labels Ground Truth
sneezing, runny nose 52****17  {common cold, allergif: lj}%initis} {Cf)rpr'non .C(.)l'd, ‘alle?g'ic
sleepy ’ T 46FFFEZE {common cold, rhinitis} rhinitis, rhinitis, sinusitis,

53HAAH] ] {rhinitis, sinusitis} antritis}

Table 3: Each instance is a set of symptoms that a user describes. When an instance describes a set of
symptoms, disease names are the labels we collected from different doctors. Each doctor is considered as an
information source that provides disease names as labels.

tion consolidation methods are available, averaging methods
as well as other model-level ensemble learning methods are
introduced, which can be divided into three categories:
Averaging Methods

e SA: The simple averaging method. The SA method
simply takes the average of multi-source label predic-
tions. In , the authors observe that the simple aver-
aging method is competitive with a variety of adaptive
algorithms under the quadratic loss criterion.

e Wa: The weighted averaging method. Besides the sim-
ple averaging method which considers an equal contri-
bution of each label to the consolidation result, each
label has a support value as a weight learned from Sec-

tion

Consensus Maximization Methods

e MrcM: The multi-label consensus maximization method

is introduced in [11]. The MLCM learns a consolidation
result from both label predictions and cluster predic-
tions of the same instance from multiple information
sources. By ignoring the cluster predictions which as-
sign each instance with a cluster id, the MLCM adapts
to the problem setting of MHPC. Note that, the label
hierarchy is not explored in MLcM. The MLcM for-
mulates a bipartite graph where instance nodes are on
one side, label nodes from multiple information source
are on the other side. The algorithm learns a subset of
the connections between two partitions of nodes while
maximizing the consensus among them.

Multi-source Prediction Consolidation Methods

e MpcC-U: The mutli-source prediction aggregation method

that minimizes the consensus cost as mentioned in Sec-
tion 3] but uses a uniformed value for each entry of
the support label vector S during instance similarity
estimation.

e MuprC: The proposed method which minimizes the
consensus cost by optimization and incorporates the
label hierarchy in estimating hierarchical instance sim-
ilarities. The support value of each label is estimated
based on the lower bound confidence interval of the
proportion of occurrence based on all the augmented
label vectors we obtained.

5.2.2  Evaluation metrics

Ranking loss, micro-AUC and coverage error are three
metrics that we used for performance evaluation.

Minimizing Consensus Cost

Label Weights

Averaging  Optimizaiton  Uniform Hierarchical
Sa v v
Wa v v
MLcm v
Mpc-u v v
Mupc v v

Table 4: Comparison Methods

Ranking loss averages over the instances to penalize the
number of label pairs within each instance that are incor-
rectly ordered. Since the label space is large, it is relatively
hard to assign a precise probability to each label from a large
label space. Ranking labels become an alternative, some-
times a must, for the evaluation. Perfect ordered labels in
instances have zero ranking losses.

AUC (Area Under the Curve) is designed for binary classi-
fication problems with skew class distributions. In hierarchi-
cal label predictions, the ground truth labels of an instance
are relevant labels that covers a very small portion of the la-
bel space. The ground truth labels are dominated by other
irrelevant labels. In such scenario, AUC is adopted as a met-
ric which compares the ranks of all possible pairs of labels
in terms of the relevance. Formally, the label matrix Y has
a total of N x K entries. Let Pos be the label set with
positive (relevant) entries and Neg be the label set with all
the other negative (irrelevant) entries. In hierarchical label
predictions we usually have card(Pos) < card(Neg), where
card(.) is the carnality of a set. Given a list of relevance
scores f() of all entries, micro-AUC [20] is defined as

L[f(@) > f(4)]
micro-AUC = Z Z card(Pos) X card(Neg) (16)

i€Pos jeNeg

where f(i) is the relevance score for entry ¢ and 1 is the
indicator function.

Note that what micro-AUC differs from ranking loss is
that micro-AUC compares the ranks of any pair of labels,
whether those two labels are from the same instance or not.
While the ranking loss focuses on the label ranking of indi-
vidual instances. That is, the difference of ranks between
labels of two different instances are not explored.

Since label predictions can be anywhere on the label hier-
archy, coverage error is adopted to measure the average
number of labels that have to be chosen from the consoli-
dation result so that those labels are able to cover all the
ground truth labels.



5.3 Experimental results

5.3.1 Convergence Analysis

In the Mupc algorithm, the hierarchical instance similar-
ity matrix W and the consolidation result Y are updated by
two phases, namely minimizing the consensus cost and esti-
mating the hierarchical similarity, respectively. Two phases
are performed iteratively until convergence. To show that
with proper parameters learned form the validation data
sets, the two-phase updating rules can lead to a convergence,
we show the performance of the MHPC algorithm after each
iteration, as shown in Figure Note that, for each data
set, the parameter \ and o are learned by the validation
set. Also, twague is fixed to 0.8 and apoise is fixed to 0.5
for all data sets. Multi-source label predictions from four
information sources are incorporated.

As shown in the figures, as the two-phase updating contin-
ues, three evaluation metrics are consistently ameliorated.

5.3.2 Parameter Estimation

The parameters of the MHPC method is chosen by those
parameters who give the best performance of the multi-
source hierarchical prediction consolidation task on the val-
idation set. The validation set is a portion of the original
data sets for parameter learning.

We compare the performance of the MHPC method on four
information sources on all the yeast data sets, with cyauge
and anoise fixed as 0.8 and 0.5. Figure |§| illustrates the
impact of the value of lamda, as a parameter, to the overall
performance of the proposed method on the validation set.

After parameter learning, A = 10 is chosen for church,
cellcyle, derisi and gasch2 data sets; A = 25 for the expr
data set; A = 15 for gaschl, seq and spo data sets. For
medical date sets, we did the same analysis and all the data
sets performs the best with A = 26.

5.3.3  Sensitivity Analysis

For experiments on yeast data sets above, two parame-
ters (Qvague and @noise) used to generate multi-source label
predictions are set as fixed values. In this section, we fur-
ther varies both ayague and anoise from 0.1 to 1 to test how
sensitive vague and noisy labels will affect the model per-
formance. We compare the performance of MHPC method
with other alternatives on each combination of ayague and
Qnoise. Due to space limitations, only the result on church,
one of the yeast data set, is reported with A = 10. Multi-
source label predictions from four information sources are
generated.

Figure [7] shows the performance comparisons with three
evaluation metrics. We observe that the MPHC outper-
forms other alternatives consistently. When the vagueness
level amoise increases, the performance deteriorates for all
the methods. But the MHPC performs relatively better than
others. On the other hand, when the noise level increases
and Qyague is fixed, WA and MPC-U methods are more eas-
ily affected by the noisy label, which leads to fluctuations of
the performance surfaces. While MHPC has a relative stable
performance when we varies apoise from 0.1 to 1 on almost
all the values ayquge can take. Note that the performance
of SA is similar with WA, so the performance of SA is not
presented in this figure.

Information Ranking Loss Micro-AUC  Coverage Error

Source
1 0.171 0.830 180.679
3 0.085 0.920 102.949
4 0.064 0.941 77.910
5 0.054 0.952 64.182
10 0.046 0.964 47.717
15 0.042 0.967 44.019
20 0.042 0.967 44.041
30 0.042 0.967 43.901
50 0.041 0.968 43.592

Table 5: Performance of the MHPC method with
label predictions collected from a varying number
of information sources.

5.3.4  Varying the Number of Information Sources

We vary the number of information sources that we collect
the multi-source label predictions from. Evaluation results
on all three metrics with cellecycle, one of the yeast data sets
is presented in Table E} Ovauge = 0.8 and ayauge = 0.5 are
used to generate multi-source label prediction and A = 10
is used as the parameter. We vary the number of informa-
tion sources from 1 to 50. From Figure 5] we can see that
if we assume information sources are making errors inde-
pendently, then collecting label predictions from three in-
formation sources will cut off almost 50% of the ranking loss
and coverage error, when comparing with label prediction
form a single information source. Moreover, as we collect
information from more information sources, three evalua-
tion metrics tend to stabilize to a final value. When adding
an information source leads to an extra cost (pay a human
annotator for labeling), this result gives some insights about
the trade-off between the number of information sources we
collect labels form, with the extra performance improvement
we may get, based on the independent assumption.

5.3.5 Resolving the Label Sparsity on Medical Data
Sets

The medical data sets come with multi-source label pre-
dictions inherently when multiple doctors gives suggestions
to each patient. Since the medical date sets have six subsets
(MED.1 to MED.6), we randomly sampled 500 instances
from each data set. The label predictions associate with
those instances are used for prediction consolidation. Ta-
ble |§| shows the performance of MHPC with other baseline
methods, for which we can see the superior performance of
MupcC method in real-world scenarios.

6. CONCLUSIONS

As information explodes, we are able to obtain an increas-
ing number of label predictions from a large population of
information sources at the same time. Due to privacy con-
cerns or storage limitations, the raw features of instances
are usually discarded or withheld. The labels we collect
from multiple information sources bring not only diversity
of labels, but also vagueness and noises. In this work, we
studied the multi-source hierarchical prediction consolida-
tion (MHPC) problem. Traditional model-level ensemble
learning problems deal with multi-source information but
they simply ignore the hierarchical structure of labels. On
the other hand, hierarchical multi-label learning problems
try to bring the label hierarchy into varies tasks such as
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Figure 5: Ranking loss, mirco-AUC and coverage error on all the yeast data sets as the updatings are
conducted iteratively in MHPC.
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Figure 6: Parameter estimation for A\ on yeast data sets.
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Figure 7: Performance with varying degrees of vagueness and noises on church, one of the yeast data sets.
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