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n Wrongful or criminal deception intendedto
F ra u d s u result in financial or personal gain
e Review spams
e Return frauds (Amazon, Costco, other retailers)

e Search spams (click farms)

e Fake news (Facebook and Twitter)
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Stories and statistics

A single couple fraudsters caused 1.2 million loss to Amazon
using return fraud 1.

Samsung fined $340,000 for posting fake reviews 2.

1. http://fortune.com/2018/06/05/amazon-tech-scam/
2. https://www.techadvisor.co.uk/feature/tech-industry/taiwans-ftc-
investigating-samsung-for-defaming-htc-on-local-online-forums-3442252/ 3
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Review frauds (spams)

Which popular review site is most trusted for local searches?

Review frauds:

BBB.org, 15%

Local . .

business \ low quality, biased,

search i Facebook, 20% and fa ke reVieWS
from the dishonest

brands and third-
party SEO.

Local Consumer Review Survey 2017 Bri g hﬂ.oca|

Google, 16%
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The challenges

How do online customer reviews influence your decision to

80%
actually use a local business?
70% 68% 68% I don't know, 16%
60% 0 .
19% Not influenced

50%

50% 2
10/
- 0% 42%
o 36%
30% No, 14%
20% L0
12%
i .
0%
Positive customer reviews | Negative reviews make me not|| tend to select a local business | | read reviews but they don't
make me more likely tousea | want to use a local business | based on other factors such as influence my decision

local business location and price

Local Consumer Review Survey 2017 2016 W2017 Brlghtl.ocal Local Consumer Review Survey 2017

Source: https://www.brightlocal.com/learn/local-consumer-review-survey/
based on a pool of representative sample of 1,031 US-based consumers

Is it easy to spot if a review is fake?

Yes, always, 16%

Yes, sometimes, 54%

BrightLocal
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Create a trustworthy system that
spots frauds for social good.
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Existing efforts: reviewmeta + spotfake

amazon

tripadvisor

Google

~N

Hand-crafted features:

. two reviews posted in the same time;
. two accounts posted for the same targets;
. two accounts has similar names 1;

. all 5-star reviews;

Classifiers:

decision trees, SVM, logistic regression.

v

Outcome + Explanations

2= Analysis Details
FAIL Z Suspicious Reviewers

Take-Back Reviewers

‘. 40% Have Previously Deleted Reviews B 5.0/5

From Take-Back Reviewe

2 of the 5 reviewers have had at least one of their past reviews for another product
deleted. This is an excessively large percentage of Take-Back Reviewers which
may indicate unnatural reviews.

o I
o I

14.0/5

im Single-Day Reviewe
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Existing efforts

Independent review fraud detectors

e http://reviewfraud.org
e htips://www.fakespot.com
e https://reviewmeta.com
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Detection pipeline

Hand-crafted features:

» two reviews posted in the same time;

» two accounts posted for the same targe
 two accounts has similar names 1;

« all 5-star reviews;

» Singleton reviews;

* near-duplicate review texts;

* near-duplicate images;

1. based on a true story: http://reviewfraud.org/cloud-9-marketing-aguilar-vientures/ 9
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Detection pipeline

Supervised:
decision trees,
SVM

logistic regression.
Unsupervised:
feature histogram

graph pattern

burst detection

rules:

10
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Detection pipeline
~ Suspicious Reviewers

Explain the Working and outcomes Take-Back Reviewers

‘. 40% Have Previously Deleted Reviews B 5.0/5 4.7/5
[} E n d - u S e rS d e S e rve to kn OW th e fa Ct ; - . . From Take-Back Reviewers From Rev[evyers Without Previously
2 of the 5 reviewers have had at least one of their past reviews for another product Deleted Reviews

deleted. This is an excessively large percentage of Take-Back Reviewers which
may indicate unnatural reviews.

* To grow trustworthiness among users; o I

o I
* Developers need to debug the models. ?

Single-Day Reviewers

“ 20% Have Posted All Their Reviews On A a 4.0/5 5.0 /5

Single Day
From Single-Day Reviewers From Non-Single-Day Reviewers

1 of the 5 reviewers has written multiple reviews but posted all of them on a single
day. While this is more Single-Day Reviewers than we'd expect to see, it does not

appear to have a significant impact on the overall rating. B _ 4.0

11
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Challenges

1. Accuracy vs. Explainability.
2. Reactive Detection vs. Active Fraudsters.

3. Explainability vs. Security.

12
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Review data

Pasta Prego
$$ - Italian
1502 Main St
Napa, CA 94559

33 10/14/2018

This was a cozy and friendly pasta place in Napa. | loved the penne pasta
which came with smoked chicken, mozzarella, basil and tomato sauce.
Was pretty good although a bit salty. Everything blended in well together.

Kevin

(Jennifer Cj

)N i

X
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1 similar texts and images?
Spam dEteCthn suspicious linguistic patterns?

A 4

burst of number of reviews? Customer reviews

— NR
I~

601 ~o

- WYYy ir 2,341

4.2 out of 5 stars v

Sstar L] | 65%
4 star 15%
3 star 8%
2 cdar ﬂ— A0,

1 star 8%

See all 2,341 customer reviews >

extreme rating?

70

~

501
a4
Z 401
301
201
10

0 20 40 60 80 100 120 140

time windows

Jennifer a spammer?

~
Larry a spammer? -7 - \ ) .
yasp : S Committed spams?

SA
similar connectivities?

[



LEHIGH

UNIVERSITY

Click to add header

Advanced models are desired

nnnnnnnnnnnnnnnnnn

Features that matters:

1 O e e ~~w., dog(0.01)
. cat (0.04)
T I boat (0.94)
H O L Ir % bird (0.02)
s e = g
1 I -_ L i ==t

« Text and image similarity;

» Time series patterns;
- ? A
« Graph connection patterns; . [ATAl-A N ,
& & -
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Deep structured prediction
Prob(spammer) Prob(spam) Prob(spam) Prob(spammer)

:}@ = &= &

T \
'O 00 0!

R NN 8= Analysis Details

From the hostess to the waitress everyone was very - Suspicious Reviewers
helpfull and attentive, the food was absolutely amazing
and the Presentation was beautiful. .

Take-Back Reviewers

‘. 40% Have Previously Deleted Reviews B 5.0/5 475

From Take-Back Reviewers From Reviewers Withou

2 of the 5 reviewers have had at least one of their past reviews for another product Deleted Reviews
deleted. This is an excessively large percentage of Take-Back Reviewers which
ay indicate unnatural reviews.

o I
o I
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Explaining complex detectors

Which popular review site is most trusted for local searches?

TripAdvisor, 11%
BBB.org, 15% ripAcvisor, 21%

Citysearch, 4°/c~

Yellow Pages, 10%

Foursquare, 3%
Google, 16%

Local Consumer Review Survey 2017

Facebook, 20%

Yelp, 20%

Multiple sources of supervision
http://reviewfraud.org

https://www.fakespot.com

https://reviewmeta.com
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Challenge 2

Dealing with active fraudsters — it is too late when it happens.

Proactive detection is widely deployed in computer softwares and
networks, auction networks.

Much more difficult in review fraud detection systems.

18
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Proactive detection via retraining

guidance Test on
Generator Detector , }
Spam data generation l I Model re-training

19
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Challenges

1. Accuracy vs. Explainability.
2. Reactive Detection vs. Active Fraudsters.

3. Explainability vs. Security.

20
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Challenge 2

Proactive detection via gradient attack.

) ¢ Spams t X
+ Non-spams
Re-trained model
Deviation
from avg

Number of 5-star posts per day )
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Generate spams in the input space

Proactive detection via attack simulation.
e \When to post a spam?

e Ratings of spams?

e Which account to post a spam?

e \What contents to put down in a spam?

22
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Partial solutions

How to generate spam data?

1. Maximum entropy to find the attack rating distribution.
2. Burst-avoiding techniques for attack timing.

3. Graph-based attack.

4. Review text generation.

23
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Find evasive rating distribution

P: spammer target distribution Q: a normal rating distribution
5 stars 82 5 stars 29
4 stars 43 4 stars 17
3 stars 25 3 stars 3
2 stars 9 2 stars 7
1 star 6 1 star 5

max p similarity (P, Q)

subject to some constraints

24
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Find evasive posting frequency

Burst-avoiding techniques for attack timing.

Easy to catch Looks more like a normal one

5 O—0
O/O_O\C ) I e e )
\J \J \J \J \J
O_O\C\/O\o_/_\_o_o 4
3

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Nov Dec

25
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Find evasive rating distribution

Burst-avoiding techniques for attack timing.

Abnormal rating dynamics

O_O\/s\o_%\—o—o max current + future promotion

subject to smoothness constraint

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

26
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Find attacking accounts

max , f(G+g)

g

subject to

27
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Generating fake review texts

« Crowdturfing: fraudsters are evolving to adopt « Cheap automatic text generators can fool
more natural sounding templates and writing * linguistic-based detectors 2

RNN is practical for short texts: 30% human

detectors, machine detectors F1-score

Linguistics-based detectors: < 70%

1. What Yelp Fake Review Filter Might Be Doing? ICWSM, 2013
2. Automated Crowdturfing A acks and Defenses in Online Review Systems, CCS, 2017

3. Maximum-Likelihood Augmented Discrete Generative Adversarial Networks, ICML, 2017 28
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Challenges

1. Accuracy vs. Explainability.
2. Reactive Detection vs. Active Fraudsters.

3. Explainability vs. Security.

29
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Explainability vs. security

(AR
T x .x\‘ .~ | N
' R
xl ’N._,I _________________ [
Deviation e e PO | More complex model |
evia . '~ g -7
== o adll
from avg .\. <. + +
~+
- T
v d

Number of 5-star posts per day

30
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Explainability vs. security

PGM,
DNN, O
Ensemble o
decision trees,
rule-based,
KNN
linear model
Model explainability
>
1. TanJ. Goodfellow, Jonathon Shlens & Christian Szegedy. Explaining and harnessing adversarial examples. ICLR. 2015. 31

2. Florian Tramer, et al. Stealing machine learning models via prediction apis. USENIX. 2016.
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The reality

r—-——=—-=-=-=-=-=-=-=-== |
l Qrntfake cam ! Sy € Least Trusted Reviews
R Ll FAKESPOT REVIEW A — ]

S 5/5 Awesome unit. Small footprint with huge quality audio

) Music
_____ B Awesome unit. Small footprint with huge quality audio. Now want ... [Go to full
1 .
. S review]
Jan 30, 2018
Ir 0% Y4 Unverified Purchaser
TRUST b~ Created on a high volume day
Reviewer: David R Fleig s
‘g Never-Verified Reviewer 1

‘g Single-Day Reviewer (posted all reviews on Jan 30, 2018)
f\ Easy Grader (avg. rating: 5.0)
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