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Abstract—Popular web applications, such as e-commerce, so-
cial networks and online ad auction, are providing valuable
services to web users but have also been plagued by prevalent
and diverse frauds. Many detection methodologies have been
devised but detection trustworthiness is still one important and
yet missing desideratum: a user will not trust a detector that has
uncertain accuracy, can malfunction under unexpected situations,
or can’t explain its behaviors and interal working. Previous
efforts mostly focused on detection accuracy, and our goal is
to chart a path towards a more comprehensive definition of
trustworthy detection, that consists of accuracy, transparency,
and proactivity. To achieve the goal, we identify key challenges
rooting at the specific settings of the above applications: the
evolving nature and unexpectedness of the fraudsters’ strategies,
the ever-growing large amount of data, and the increasing
complexity of effective detectors. We hope spark a large volume
of research questions and solutions with respect to the above
challenges.

I. INTRODUCTION

Many web applications, such as e-commerce, social networks,
and ad auctions, are now indispensable components, as they
make valuable information more accessible to a wider audi-
ence by connecting many entities. For example, Yelp and Ama-
zon connect millions of customers and merchants to allow con-
venient evaluation and search of merchandise; social networks,
such as Facebook, Whatsapp, and Twitter, connect millions of
people, businesses and other organizations ' and allow the fluid
exchange of information; online ad networks and exchanges,
such as Google Marketing Platform 2, connect publishers,
advertisers, and web users for more effective ad distribution
and tracking to benefit all parties. However, dishonest users
(the fraudsters or attackers) are abusing these applications for
various malicious purposes. On Yelp, Amazon and many other
review websites, opinion spammers are posting fake reviews
to hijack the opinions of the genuine customers, and unfairly
promote and defame the ratings of their targets; on Whatsapp,
terrorists are exploiting the encrypted communication channel
to plan terrorist attacks; on Twitter, false information can be
created and then propagated to a large number of audience to
influence public opinions. Also commonly found on online ad
networks and exchanges are Ad fraudsters, who are creating
fake websites to deceive the advertisers into spending money
on ads that no one will click. These malevolent actors and
activities are undermining the efficiency and effectiveness of
these platforms, jeopardizing the well-being of individuals,
businesses and the whole society [39], [1].

! According to a 2018 Statista report
Zhttps://www.blog.google/products/marketingplatform/360/
introducing- google- marketing-platform/

To mitigate the adversarial effects, many fraud detection
mechanisms (the defender) are designed to prevent and spot
suspicious activities and entities. Effective detectors aim at
signals and models that can identify frauds with high precision
and recall rates. For example, in [22], near-duplicates of
contents are considered as suspicious activities and could lead
to the detection of spams; in [46], [49], detection signals are
derived from streaming data to monitor suspicious dynamic
changes; in [3], [44], [32], [21], data are represented by
heterogeneous networks that connect multiple types of entities,
such as accounts and products, and suspicious connection
patterns, such as dense blocks, can be detected.

Besides more effective signals and models, another ap-
proach is to collect and analyze large-scale genuine fraudster
data to shed light on fraudster characteristics [27], [26],
[45], [37], [38], [36], [23]. The understanding can provide
new insight and lead to more accurate detection. In [26],
[27], [45], honeypots are deployed to collect social spams;
in [37], [38], [36], the authors seized real botnets to understand
fraudsters’ operations; in [23], real email spams are collected
and analyzed. However, it usually takes a long time and huge
effort to seize such data, which are typically securely protected
by fraudsters.

The above two approaches are reactive and can deter the
frauds only after they happened while proactive approaches
can bring more detection trustworthiness. In particular, one
can simulate the behaviors and tactic of the fraudsters so that
the defender can anticipate unseen but likely attacks in the
future. Based on the simulation data, detectors can be patched
for more robust detections. This idea has been widely applied
in software security under the name “vulnerability analysis”.
For example, in [25], vulnerability analysis is conducted by
simulating penetration of fraudsters to an ad auction network;
in [13], vulnerabilities of an IDS (Intrusion Detection Sys-
tem) are revealed by penetration test. Adversarial machine
learning has just started receiving the deserved attention most
recently [43], [7], [28], [41], [6]. Vulnerability analysis is less
conducted in social network and product review applications
with a few exceptions in [21], [50], [14], [4].

Transparent detectors are also more trustworthy since the
humans who operate the detectors can understand how a
decision is made and how to correct wrong detections. More
generally, explainable Al (XAI) becomes a surging research
area [2], [18], [20], [17] due to the demand for “a right to
explanation” [19] and robust and reliable decision making
in safety-critical applications like self-driving cars [31], [40],
[5]. The goals of XAI is to provide human-interpretable
information regarding the outcomes and workings of an Al



model. Major approaches are based on sensitivity analysis [29]
and model approximation [35], based on which fraud detectors
based on SVM and deep neural networks can be explained.
Since the connections among entities are important for fraud
detection, detectors based on graphs are indispensable in any
effective defense. Explaining graphical models has also been
explored [30], [9], [48], [16], [11], [10], [15], where the focus
is on the differential analysis of Bayesian or Markov networks.

II. NEW CHALLENGES AND SOLUTIONS

The detectors, when viewed as a component running inside the
larger applications, are facing new trustworthiness challenges
besides detection accuracy.

A. Transparency in detection

To handle the increasing level of attack sophistication, more
advanced and effective detectors are required. However, these
models naturally become more complicated as more complex
attack behaviors are considered and modeled. At some point,
the users of the detectors start having difficulties in understand-
ing the detection process and outcomes. However, detection
transparency is important in security applications. First, for the
detection operators to confidently adopt a detector, they need
to know where the detector is likely to fail, and when it fails,
what are the root causes of the failures. Also, as the operators
need to make the final decision regarding more serious or
larger-scale security issues, the decisions from the detectors
should be made transparent to allow the operators to reason
about the fairness and reasonableness of the decisions. A real-
world case is that, when a botnet is detected in an ad exchange,
the security team needs to investigate the detection and further
take actions to shutdown the botnet. Lastly, the detection
outcomes will affect the operation of the hosting applications
and their users. Frequently, besides a detection outcome, how
the decision is arrived at should be communicated to the end-
users. For example, Yelp may need to explain to a reviewer
or a business why a review is deleted.

How to introduce transparency to a detector depends the
data and model that the detector handles. We are interested
in transparent detectors that make structured predictions using
graphical models, that can flexibly model anomalies in graph
and sequence data commonly found in the above applications.
We propose to explain detection based on inference algo-
rithms, such as message passing [42], through join sub-graph
mining and approximation. When deep graphical models are
used [12], decisions are also made based on the underlying
deep networks and thus the transparency can be arrived at by
combining sub-graph mining and sensitivity analysis.

B. Proactivity in detection

As the fraudsters continue to exploit new vulnerabilities in
the defender, the detectors’ strategies are lagging behind the
attackers’ [24]. The implication is that a reactive defender can
be evaded by unexpected attacks even if it can be patched after
the vulnerabilities are discovered. If this happens frequently,

users will lose their trust in the defender. To deal with this in-
competence, proactive detectors have been proposed [8], [28],
[33], [34], [43], [7], [28], [41], [6]. However, these models
operate only on vectorial data and can’t handle heterogeneous
and structured data. Most recently, adversarial learning on
sequences and graphs are proposed [14], [50]. However, there
are still many challenges. First, if reinforcement learning is
used to discover vulnerabilities [14], then one has to specify
the design of reward function and the representation of the
states, address the time complexity in computing reward
functions and a large number of states, etc. Second, as the
amount of data is increasing, training proactive detectors is
much more time consuming than training regular detectors. For
example, re-training while searching for adversarial examples
involve a bi-level optimization problem on a large dataset.
Third, it is rarely possible to obtain full information of the
fraudsters, and any strong assumption about their behaviors
will result in a defense that can be easily penetrated when
the fraudsters change their behaviors. Lastly, while previous
work usually explicitly or implicitly assumed that there is
only one adversary, there are many groups of fraudsters with
diverse behaviors. We believe that there are many research
opportunities in designing proactive defense on the increasing
complicated attack-defense scenarios.

To address the above challenges, inverse reinforcement
learning can be used to learn the reward function without
specifying it. Representing a graph as a state can be chal-
lenging and graphical convolutional neural networks can learn
a vector representation of a graph. Sparsity in the data should
be exploited to speed up the training of proactive detectors.
Attack-agnostic defense is more robust and can be achieved
by identifying universal properties of the underlying detectors
and application constraints. Lastly, multi-agent reinforcement
learning or mean-field [47] is a promising direction to model
multiple attackers that collaborate or compete in committing
frauds.

C. Achieving transparency for proactive defense

Proactive detectors add another layer of complexity to tra-
ditional models, and established model transparency can be
again in jeopardy. First, due to limited data, the proactive
detectors are not perfect and have their own vulnerabilities,
and discovering new vulnerabilities can be non-trivial. For
example, revealing the vulnerabilities of a regular SVM is
different from that of a robust SVM with bi-level optimiza-
tion [8]. Second, with the added layer of proactivity, the
completeness and interpretability of the explanations of the
reactive counterpart (e.g., plain SVMs) need to be redefined.
Here completeness refers to the degree to which a model
can be explained, while interpretability indicates how easy
an explanation can be understood by a human being. For
example, shall we include the set of parameters of the attacker
in an explanation of the above robust SVM? How does the
inclusion affect or improve interpretability? The combination
of the increasing need for transparent and proactive detectors
is complicating the task of trustworthy fraud detection.



For proactive models obtained through re-training [28],

the

reactive and proactive models have different decision

boundaries but can be explained through the same methods.

We

propose a comparative approach, which juxtaposes the

explanations of the reactive and proactive models and explain
what makes the difference in the two models. A user can then
decide whether and how the added layer of proactivity makes
more sense.

III. CONCLUSION

We reviewed existing literature on fraud detection in applica-
tions, such as e-commerce, social networks and ad exchange,
where frauds are prevalent and critical. We pointed out three
desiderata of a trustworthy fraud detection system in these
applications, namely, accuracy, transparency, and proactivity.
While the detection accuracy can be addressed by considering
more factors and designing more complicated models, the
transparency and proactivity shall be attacked from different
perspectives. We discussed technical challenges in addressing
these desiderata.
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