
Efficient Multiple Objective Optimization for Fair
Misinformation Detection

Eric Enouen1∗, Katja Mathesius2∗, Sean Wang3∗, Arielle Carr4, Sihong Xie4
Ohio State University1, Drake University2, Cornell University3, Lehigh University4 ∗ Equal contributions

Abstract—Multiple-objective optimization (MOO) aims to si-
multaneously optimize multiple conflicting objectives and has
found important applications in machine learning, such as
simultaneously minimizing classification and fairness losses. At
an optimum, further optimizing one objective will necessarily
increase at least another objective, and decision-makers need
to comprehensively explore multiple optima to pin-point one
final solution. We address the efficiency of exploring the Pareto
front that contains all optima. First, stochastic multi-gradient
descent (SMGD) takes time to converge to the Pareto front
with large neural networks and datasets. Instead, we explore
the Pareto front as a manifold from a few initial optima, based
on a predictor-corrector method. Second, for each exploration
step, the predictor iteratively solves a large-scale linear system
that scales quadratically in the number of model parameters,
and requires one backpropagation to evaluate a second-order
Hessian-vector product per iteration of the solver. We propose
a Gauss-Newton approximation that scales linearly, and that
requires only first-order inner-product per iteration. Third, we
explore different linear system solvers, including the MINRES
and conjugate gradient methods for approximately solving the
linear systems. The innovations make predictor-corrector efficient
for large networks and datasets. Experiments on a fair misin-
formation detection task show that 1) the predictor-corrector
method can find Pareto fronts better than or similar to SMGD
with less time, and 2) the proposed first-order method does not
harm the quality of the Pareto front identified by the second-
order method, while further reducing running time.

I. INTRODUCTION

Multi-objective optimization aims to find optimal solutions
for multiple objective functions and has been an important tool
for machine learning. For example, in multi-task learning, each
learning task has an objective function to be optimized and
tasks can be optimized jointly; in a recommendation system,
content relevance and personalization are two important goals
for the system to achieve simultaneously; and in fair machine
learning, fairness and classification accuracy are two important
objectives. Usually the multiple objectives are conflicting and
it is impossible to find a solution that is optimal for all individ-
ual objective functions. Rather, trade-offs among the objectives
are necessary and optimality in MOO can be characterized by
the Pareto optimality: a Pareto optimum is a solution where
improving any one objective function necessarily harms at
least one other objective function, and jointly improving all
objectives is impossible.

Previous work [3] aims to find a single Pareto optimum
without controlling the trade-off among the objectives. This
is undesirable since an objective function may not be suffi-
ciently minimized, while the users cannot access and compare

multiple trade-offs. To address this, the authors of [22], [12]
proposed multi-gradient descent methods, which maintain a set
of current best trade-offs and push the solutions towards the
Pareto front. However, they still cannot control which trade-
offs to reach during the optimization and the solutions can
occupy only a small region of the front. In [11], [14], further
constraints are added to the gradient-based optimization so
that preferences over the trade-offs can be specified and the
solutions are better spread across the front.

One common drawback of this prior work is the computa-
tional efficiency in comprehensively traversing the Pareto front
for practitioners to pinpoint the desired trade-off. The above
optimization algorithms start from arbitrary initial points that
can be far away from the fronts, demanding many gradient
descent steps to converge. Recovering the fronts requires
running these algorithm multiple times starting from some set
of initial random solutions. As each descent iteration can be
costly with large datasets and neural networks, such methods
are not feasible for comprehensively recovering the Pareto
fronts (see, e.g., Figure 3).

The predictor-corrector method addresses this issue. Intu-
itively, the optimal solutions are assumed to form a low dimen-
sional manifold, which can be approximated by a tangent plane
at an optimal solution. Therefore, moving from one optimal
solution to a neighboring optimal solution can be done by
moving along the plane (via the predictor step) and pushing
the approximated solution back to the Pareto front manifold
(via the corrector step) to find the next optimal solution. Since
two Pareto optima are closed on the manifold, it is expected
that less computation is needed to explore the manifold locally.

However, in the predictor step, we still face two challenges
centering around solving a large-scale linear system of the
form Hv = b. Here, H is an n × n symmetric matrix and
v ∈ Rn is a vector of exploration direction that moves the
current Pareto optimum x to x+v, and b =

∑m
i=1 βi∇fi(x)

is a linear combination of the gradients of individual objective
functions fi, i = 1, . . . ,m, for some coefficients βi > 0. First,
the system Hv = b requires an iterative solver, such as the
Krylov methods conjugate gradient (CG) or MINRES [23],
[19]. As the solver must solve a new system per predictor
iteration, the associated cost is a substantial portion of the
total cost of exploring a Pareto front. In particular, the matrix
H is a linear combination of the Hessian matrices of the
objective functions [16], [13]. Direct evaluation of the Hessian
matrices can be costly or even infeasible for deep learning
models. One can apply the Pearlmutter trick [18] and use

978-1-6654-8045-1/22/$31.00 ©2022 IEEE

a forward and backward propagation implemented by auto-
differentiation to evaluate the matrix-vector product, Hv. This
is still quite costly for large networks and datasets since one
forward-backward propagation is needed per iteration of the
solver, which is invoked per iteration of the predictor. Second,
without knowing the properties of the system with a specific
multi-objective optimization problem, currently no study about
the efficiency of the solvers is available. Since we do not
explicitly store the Hessian, H , the use of Krylov methods is a
natural choice as such solvers require only a linear operator (or
matrix-vector product) to construct the Krylov subspace. In the
present study, we consider CG and MINRES since both can be
employed when the coefficient matrix (e.g., H) is symmetric.
CG, however, requires that the matrix be symmetric positive
definite (PSD) and H is not guaranteed to be PSD.

We propose a different approach based on the predictor-
corrector method to approximate the Pareto front. We address
the efficiency of the Pearlmutter trick by avoiding the forward
and backward propogation required to compute Hv during
each iteration of the linear system solver. We adopt the Gauss-
Newton method to approximate the Hessian matrices, and
the resulting approximation is low-rank, cheaper-to-compute,
and PSD. The Gauss-Newton approximation uses the sum of
outer products of gradient vectors of objective functions to
approximate the second-order Hessian. As a result, only the
gradients of the objective functions are needed and those can
be computed as calculating the right-hand side b vector. No
additional forward and backward propagations are needed for
computing Hv. Since the outer products are PSD, either MIN-
RES and CG methods can be used to solve the corresponding
linear systems. As a by-product, we are able to benchmark
the cost of MINRES and CG within the predictor-corrector
method.

The paper is organized as follows. In Section II, we review
multi-objective optimization (MOO). In Section III, we de-
scribe the predictor-corrector algorithm and the Gauss-Newton
approximation for MOO. In Section IV, we formulate an MOO
problem for fair misinformation detection and validate our
claims through empirical experiments on three datasets for
misinformation detection.

II. PRELIMINARIES

In this section we review the basics of multi-objective op-
timization, predictor-corrector methods, and iterative methods
for solving linear systems. The notation is in Table I.

A. MOO and Multi-gradient descent

We consider an MOO problem that has m objective func-
tions fi(x), i = 1, . . . ,m, where x ∈ Rn is the parameter
of the functions. For example, in fair machine learning, the
goal is to optimize a predictive model’s parameter x so as to
minimize classification loss (measured by f1) while reducing
the discrepancy (measured by f2) between the treatment of
different populations. We let f = [f1, . . . , fm]⊤ : Rn → Rm

be the vector of the m objective functions. We want to find
an optimal x∗ that minimizes all m objectives simultaneously.

TABLE I: Notations and definitions.

Notations Definitions

fi The i-th objective function to minimize
f The vector of the m objectives
x Vector of parameters of f
J The Jacobian of f w.r.t. x
J⊤ The transpose of a matrix, J
Hi The Hessian matrix of fi w.r.t. x
Hi The ith power of H
v(i) The approximate solution at the ith iteration

However, since the objectives can be conflicting and no single
solution x can attain all the minima of individual objectives,
we must accept some trade-offs among the objectives. To
characterize the optimality with multiple conflicting objectives,
a Pareto optimum is a solution where simultaneously reducing
all m objectives is impossible, and reducing one objective will
necessarily increase at least another objective. We say that the
solution x dominates another solution x′ if fi(x) ≤ fi(x

′)
for all i = 1, . . . ,m and at least one strict inequality holds. A
Pareto optimum is optimal in the sense that it is not dominated
by any other solutions.

There can be multiple Pareto optima and the image of the
set of Pareto optima under the mapping f in the space Rm is
called the Pareto front. We aim to generate a Pareto front for f
so that a user can select the optimal solution with the accepted
trade-offs. For example, in fair machine learning, we want
to find a predictive model with accuracy higher than a given
threshold while minimizing unfairness. Without searching for
a Pareto front, the user may not be able to find solution with
the desired levels of accuracy and fairness.

To find a Pareto front, the multi-gradient descent algo-
rithm [4], [3] starts from a random initial solution and cal-
culates a descent direction that can jointly reduce all objective
functions in each iteration. The iterations continue until a
Pareto optimum is reached where such a descent direction
is no longer possible. If the current solution x is not on the
Pareto front, we can optimize the weights (λi, i = 1, . . . ,m)
of the gradients of the objectives so that the weighted sum of
the gradients is a descent direction for all objectives as

max
λ

− 1

2

∥∥∥∥∥
m∑
i=1

λi(∇fi(x))

∥∥∥∥∥
2

(1)

s.t.
m∑
i=1

λi = 1, λi ≥ 0, i = 1, ...,m, (2)

where ∇fi(x) is the gradient of the i-th objective function at
the current solution x. This can be extended to find multiple
Pareto solutions on the front [12]. Since a Pareto solution is
found based on a random initial solution, the method can
still take many steps to move to the Pareto front. Thus, to
comprehensively recover a Pareto front, a large set of solutions
needs to be maintained and optimized, leading to high cost.

Fig. 1: Pareto optima constitute a 2-dimensional manifold
in R3. The predictor uses the tangent plane to predict the
direction v so that x+v is close to the next Pareto optimum.

B. Predictor-corrector methods

We introduce the predictor-corrector method that can find
the Pareto front more efficiently. Predictor-corrector methods
were introduced to MOO in [16], [13] as a way to explore
a Pareto front.A predictor-corrector method consists of two
steps: a predictor step that approximately moves to a neigh-
boring point of the current Pareto solution, and a corrector
step that pushes the approximated neighboring point onto the
Pareto front. Another round of prediction and correction can
then be conducted to generate the next Pareto solution.
Predictor. This step is derived in [7]. For brevity, we present
the main result below. Locally, at the current Pareto solution
x, the hyperplane in Rn that passes through x and is tangent
to the manifold can be described by the linear system

H(x)v = JTβ. (3)

Here, H(x) =
∑m

i=1 αiHi(x) is a linear combination of the
Hessians of individual objectives, v represents the exploration
direction so that x+v is on the tangent hyperplane, J ∈ Rm×n

is the Jacobian matrix of the m objective functions in f , and
β is a weighting vector chosen from [−1, 1]m to determine
which objectives to increase/decrease by moving along v. See
Fig. 1 for a demonstration in R3.
Corrector. The corrector step can employ any multi-objective
optimization method, such as the above-mentioned multi-
gradient descent method. The idea is to descend towards the
Pareto front starting from x + v where v is the exploration
direction generated by the predictor. This step is necessary
since the predictor step approximates the manifold using a
linear system and so x+ v can be off the manifold.

C. Krylov Subspace Methods

A Krylov subspace method iteratively computes an approx-
imate solution v(j) at iteration j when solving the linear
system Hv = b by updating the initial solution v(0) as
v(j) = v(0) + z(j), with z(j) ∈ Kj(H,u). Here,

Kj(H,u) = span{u, Hu, H2u, . . . ,Hj−1u} (4)

is the Krylov space of dimension j, for H an n× n square
matrix and u a length n column vector.1 The update z(j) comes
from a projection onto the Krylov space, and its computation,
as well as the choice of u, is specific to the method. We
note that Kj is never explicitly computed as in (4). For the
methods employed in this paper, MINRES implicitly builds an
orthogonal basis for the Krylov space and iterates such that
the residual ∥r(j)∥ = ∥b −Hv(j)∥ is minimized. CG does so
such that the residual is orthogonal to Kj . Other approaches,
such as biconjugate gradients and error minimizing methods
also exist (see e.g., [23]). More details on the Krylov methods
specifically employed in this paper are given in Section III-A,
and we refer the reader to [23], [19] for further details on
Krylov methods in general.

III. PROPOSED METHOD

The key bottleneck of the predictor-corrector method is to
solve the large-scale linear system in Eq. (3). There exist
critical challenges to this: 1) The matrix H is too large and
dense to be computed and stored explicitly. 2) Inverting H
is very expensive (i.e., O(n3) time complexity) rendering
iterative methods (Section III-A) necessary. 3) Though an
iterative method using the Pearlmutter trick can avoid the
direct evaluation and inversion of H , it still requires one
backpropagation for every iteration of the iterative methods to
compute Hv. With large datasets, especially those without the
I.I.D. assumption to facilitate stochastic gradient estimation,
estimation of the matrix-vector product requires going through
the datasets once for each backpropagation. Lastly, 4) the
matrix H is not necessarily PSD, and so the use of CG is
not guaranteed.

A. CG and MINRES

In order to solve for v in Eq. (3), we want to avoid explicitly
taking the inverse of the Hessian (i.e., we avoid directly
solving the system) since this is generally far too expensive
for our purposes and particularly as the number of parameters
becomes very large. Instead, we employ computationally-less
expensive iterative methods for approximately solving linear
systems, and specifically the Krylov methods MINRES and
CG, which can be implemented in a matrix-free fashion. In
other words, we do not need to explicitly store the Hes-
sian matrices in memory; rather, we simply need to define
the matrix-vector product, or linear operator. The residual
is guaranteed to monotonically decrease when employing
MINRES, enabling early termination of the method. A major
contribution of previous work was introducing the use of the
iterative solver, MINRES [13]. In the present study, we aim
to expand the user’s choice to include CG and we provide a
novel comparative analysis of these two iterative solvers when
performing multiple-objective optimization.

CG and MINRES are iterative solvers for symmetric linear
equations Hv = b. CG [6] was developed as a more com-
putationally efficient variant of the gradient descent method

1Notationally, we let H be our coefficient matrix throughout, but note that
this need not be a Hessian matrix to use these Krylov methods.

and requires that H also be positive definite. Both methods
operate by finding the gradient at the current solution (in our
context, the v vector) and then moving in the H-orthogonal
direction. That is, at iteration k, given a point v(k) and a
direction p(k), CG performs a line search to find the value α
and updates the solution as v(k+1) = v(k) + αp(k). Then, a
new direction that is conjugate to p(k) is computed such that at
each iteration the residual is perpendicular to the Krylov space,
that is, r(k) ⊥ Kk. Theoretically, this method is guaranteed to
converge in at most n iterations, but it is well-known that CG
often reaches an acceptable tolerance in far fewer iterations.
For ease of reference, we provide the CG method following
that in [19] in Algorithm 1.2

The MINRES method solves the system Hv = b by
choosing the update to the approximate solution v(k) such
that ∥r(k)∥ = ∥b − Hv(k)∥ is minimized. One of the key
features of this method is due to the symmetry of H: MINRES
saves significant memory costs, requiring the storage of only
the two previously computed basis vectors from the Krylov
space. This is performed via the Lanczos algorithm using
what is referred to as a three-term recurrence; we omit the
details here but refer the reader to Section 6.6 in [19]. Since
the practical implementation of MINRES can become quite
complicated, we provide the algorithm for the algebraically
equivalent conjugate residual (CR) method [19] for brevity.
The major computational steps (and costs) of MINRES for
our purposes can be easily highlighted in the CR algorithm.
In both Algorithms 1 and 2, we let tol denote the user-defined
convergence tolerance, maxIter represent the max-allowable
iterations, and v(0) be the initial guess.

Algorithm 1 Conjugate Gradient Method for Hv = b

1: r(0) = b−Hv(0).
2: p(0) = r(0).
3: i = 0.
4: while i < maxIter and ∥r(i)∥ > tol do
5: αi =

∥r(i)∥2

(p(i))⊤Hp(i)
.

6: x(i+1) = x(i) + αip(i).
7: r(i+1) = r(i) − αiHp(i).
8: βi =

∥r(i+1)∥2

∥r(i)∥2 .

9: p(i+1) = r(i+1) + βip(i).
10: i = i+ 1.
11: end while

CG is used for PSD matrices, while MINRES is reserved
for symmetric indefinite matrices. While we provide a com-
parative analysis of these methods in the present study, the
development of a specific recipe for when to choose one
method over the other for these applications is part of ongoing
work. Our results demonstrate flexibility in the choice of solver
without sacrificing computational time.

We note that simple optimizations can be immediately taken
advantage of in both algorithms. Since both require the initial

2Note that in the iterative method literature, H is often used to denote
an upper Hessenberg matrix, especially for methods like GMRES [20]. For
consistency, we use H to denote a general coefficient for our application.

Algorithm 2 Conjugate Residual Method for Hv = b

1: r(0) = b−Hv(0).
2: p(0) = r(0).
3: i = 0.
4: while i < maxIter and ∥r(i)∥ > tol do
5: αi =

(Hr(i))⊤r(i)

∥Hp(i)∥2 .

6: x(i+1) = x(i) + αip(i).
7: r(i+1) = r(i) − αiHp(i).
8: βi =

(Hr(i+1))⊤r(i+1)

(Hr(i))⊤r(i)
.

9: p(i+1) = r(i+1) + βip(i).
10: i = i+ 1.
11: end while

residual, r(0), using an initial guess of v(0) = [0 0 · · · 0]T
allows us to avoid the matrix-vector product in line 1 of each
algorithm and we simply let r(0) = b. Further, and as we
will demonstrate in our experiments, basing termination of
CG and MINRES on maximum iterations alone is sufficient
for generating an accurate Pareto front, allowing us to remove
the test for convergence in future implementations (i.e., the
computation of ∥r(i)∥ at every iteration). While this is not a
significant cost alone, when solving a large number of linear
systems, the accumulated cost may no longer be negligible.
Ongoing work focuses on continued improvements to our
implementations to take advantage of these, and other, op-
portunities for speed-up in the convergence of these iterative
methods.

We note that in our results (Section IV), we provide data
from experiments using CG with the Hessian matrix for com-
parison purposes only. Because we cannot guarantee that the
Hessian matrix is PSD, we would naturally choose MINRES
as our iterative solver. As we later show, we still generate a
similar Pareto front (in terms of quality) using CG with the
Hessian, suggesting that some of these matrices may be (close
to) PSD or that CG does not suffer as dramatically as the
theory suggests for (slightly) indefinite matrices. Though, we
do highlight that, in many cases, CG with the Hessian results
in the largest overall runtime.

B. Gauss-Newton Approximation

We propose computing an approximation of H to avoid
evaluating the Hessian matrix (and thus the backpropagation)
per iteration of the solvers in Section III-A required to evaluate
a single Hessian-vector product. The innovative techniques
will rely on the Gauss-Newton approximation [21], which uses
a low-rank positive semi-definite matrix to approximate H
for optimizing a single scalar function f(x). Here, we are
minimizing a classification loss ℓ = ℓ(h(x)), where h is the
machine learning model that outputs a real value for regression
or a class probability distribution for classification, and ℓ is a
convex loss function, such as square error for linear regression
or negative log-likelihood for classification that takes h(x) as
input. The Gauss-Newton approximation is based on

ℓ′ = ℓ′(h(x))∇xh(x),

ℓ′′ = ∇xh(x)ℓ
′′(h(x))(∇xh(x))

⊤ + ℓ′(h(x))∇2
xh(x),

where the second line follows from the chain rule of deriva-
tives. The Gauss-Newton approximation replaces the Hes-
sian, H , with ∇xh(x)ℓ

′′(h(x))(∇xh(x))
⊤. This is reasonable

when ℓ′(h(x)) is near 0 or h(x) is near linear around x [21].
Inspired by the above analysis, we exploit the Gauss-

Newton approximation to speed up solving Eq. (3) within the
predictor step. However, the objective functions that we adopt
are loss functions that may not be convex with respect to the
output of the model, h(x), and the term ℓ′′(h(x)) may not
be positive to ensure that the Gauss-Newton approximation
is positive definite. For example, there are many fairness loss
functions that are non-convex [24]. Another issue with the
second-order term is when the loss is piece-wise linear so that
the term (and the Gauss-Newton approximation) becomes zero
in some regions, leading to a singular linear system in Eq. (3).

We propose the following Gauss-Newton approximation for
the i-th objective function fi:

GNi = ∇xfi(x)∇xfi(x)
⊤ = J⊤

i Ji, (5)

where the Jacobian Ji is the column vector of partial
derivative of fi(x) with respect to x. Then, the matrix
H(x) =

∑n
i=1 αiHi(x) in Eq. (3) is replaced with GN(x) =∑n

i=1 αiGNi(x). This approximation is guaranteed to be pos-
itive definite so long as not all gradients are zero, facilitating
the use of CG.

Regarding the computational complexity, we are no longer
required to use backpropagation that goes through the training
data once to evaluate H(x)v per iteration of the solvers
(as even when x remains the same, v changes during a
predictor step). Instead, we can go through training data
just once to evaluate and cache the Jacobian matrix, which
scales only linearly in n (the dimension of x) and in m (the
number of objectives). Per iteration of the linear system solver,
only m vector inner products (evaluating Jiv) and m scalar-
vector product (evaluating J⊤

i (Jiv)) are needed for fixed Ji,
i = 1, . . . ,m. The Jacobian can be updated at the next iteration
of the predictor-corrector method, where we reach the next
Pareto optimum.

C. Predictor-Corrector using Gauss-Newton approximation

Algorithms 3 and 4 describe how we generate a Pareto
front. After training an initial Pareto optimal network with
parameter x, we use Algorithm 3 to explore the Pareto front
in a breadth-first style. Algorithm 4 describes the computation
of the Hessian-vector product using the Gauss-Newton approx-
imation. Algorithm 4 is used at each iteration of MINRES or
CG in the predictor step of the predictor-corrector algorithm.
We take advantage of the fact that we compute a weighted
gradient of the objective functions, so J and JT can be
represented as vectors. We can then use the Gauss-Newton
approximation to approximate the product H(x)v using the
fixed J matrix, followed by m inner products and scalar-vector
product in an iteration of MINRES or CG. Note that in our
method, we use K = 1, α = 0.1, and predetermined values
for β. However, one could also store and reuse the computed

TABLE II: Dataset and model sizes

Datasets |VP | |VR| |VU | Model size
YelpChi 201 67395 38063 1234

YelpNYC 923 358911 160220 1234
YelpZip 5044 608598 260277 1234

weighted gradient and instead randomly sample β to generate
more than one child network from a single parent.

Algorithm 3 PC-GN-CG/MINRES
1: x = An initial Pareto optimal network.
2: N = Total number of networks to generate in each direction.
3: K = Number of children to generate per network.
4: β: Directions for Pareto front exploration.
5: count = 0.
6: Initialize queue q and list output.
7: Add x to q and output.
8: while count < N do
9: Pop a network parent from q.

10: numChildren = 0.
11: while numChildren < K do
12: Evaluate J .
13: Iteratively solve H(x)v = JTβ (H(x)v using Alg (4).
14: Predictor: x = x+ αv.
15: Corrector: correct x with one step of SMGD.
16: child = x.
17: optimize child using a single training epoch .
18: add child to q and output.
19: count = count+ 1.
20: numChildren = numChildren+ 1.
21: end while
22: end while
23: Repeat lines 8-21 for β = (0, 1)T .
24: Remove dominated points from output.

Algorithm 4 HVP computation using GN
1: Input: v, a length n vector.
2: Use automatic differentiation to compute the gradients of the

objective functions.
3: J = weighted sum of gradients .
4: κ = inner product ⟨J,v⟩
5: return H(x)v ≈ κJ .

IV. EXPERIMENTS

A. MOO tasks and datasets

We use multiple MOO tasks and datasets to demonstrate
the efficiency and effectiveness of the proposed GN-PC-MOO
method. Table II shows the sizes of the datasets and the
number of parameters in the corresponding neural networks.
Fair fake review detection with GNN. Reviews on e-
commerce, such as Amazon and Yelp, are important to cus-
tomers and business owners, and there are many misleading
fake reviews that need to be detected to ensure the trustwor-
thiness of the reviews. The review data can be represented as a
review-graph defined as G = (V, E), where V = {v1, . . . , vN}
denotes the set of nodes and E ⊆ V × V represents the set of
undirected edges. There are three types of nodes in G: user,

Fig. 2: Pareto fronts found by various methods. The two axes represent f1 and f2 objective function values on the training set. From left
to right: comparison on YelpChi, YelpNYC, and YelpZip datasets. Within each figure: MGD is the SMGD method running for 20, 30, and
40 iterations; Reg (λ) means the fairness regularization method with a specific regularization parameter λ; Adv refers to the adversarial
training method for fair machine learning; Predictor-Corrector uses the Hessian matrix with the CG solver, while the proposed method
PC-GN-MINRES uses the Gauss-Newton approximation with the MINRES solver.

review, and product, respectively, and each node can be of
only one of the three types. We denote the subsets of nodes
of the three types as VU ,VR,VP ⊂ V , respectively. Each
node vi ∈ V has a feature vector xi, where the subscript is
the node index. The neighbor of the node vi is denoted by
N (i) = {vj ∈ V|ei,j ∈ E}.

GNN [10] is the state-of-the-art method for node prediction.
For each node, a GNN model summarizes a node’s neighbor-
hood via message passing to predict if a review node is fake
(positive) or genuine (negative). We let ŷi = h(vi;x) be the
predicted probability of node vi being fake, and train the model
by minimizing the first objective, the cross-entropy loss on the
set of labeled training reviews VTr :

f1(x) = −1

l

l∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] , (6)

where yi ∈ {0, 1} is the label of a labeled review node,
vi ∈ VTr ∩ VR, and l is the total number of such labeled
review nodes. We use the normalized discounted cumulative
gain (NDCG) loss to measure the overall detection accuracy
across all reviews:

1

Z

u∑
i=1

1[yi = 1]
1

log(ri + 1)
, (7)

where ri is the ranking position of the i-th unlabeled review
node among all u unlabeled review nodes and Z is the
maximal possible NDCG score as a normalization factor.

We also aim to reduce unfair treatment in the detection as
the second objective. In particular, there are two groups of
nodes, the favored group, indicated by A = 0 and consisting of
reviewers, each of which posts more reviews. Those remaining
reviewers posting fewer reviews are in the protected group,
indicated by A = 1. On the training data, the protected
group are labeled as spammers more often, biasing the trained

GNN model to have a higher false positive rate over the
protected group and leading to unfair detection. To measure the
discrepancy in the detection accuracies over the two groups,
we measure the NDCG on the two groups separately and take
the absolute difference between the two NDCG scores as the
second objective function f2. Overall, we aim to optimize the
GNN model h(x) to find Pareto fronts of classification loss
versus detection discrepancy tradeoffs.

B. Baselines and settings

We have two regular fair machine learning baselines that can
find a solution that seeks to minimize both objectives. Fairness
regularization [25], [26], [9] minimizes f1(x)+λf2(x), where
λf2(x) represents the regularization and λ > 0 is the regu-
larization strength. Adversarial training [2] trains an adversary
that classifies data into two groups and our goal is to minimize
f1 while maximizing the adversary’s classification error. We
also include the following MOO methods as baselines.
• SMGD: the baseline proposed in [1]. It starts from several

random initial solutions and then steps towards a Pareto
front. It can be more time-consuming than the predictor-
corrector methods as it can take many iterations to reach
the front despite that it uses only first-order derivatives.

• PC-Hessian-CG: use the Pearlmutter trick [18] to evaluate
the Hessian-vector product and use CG to solve the linear
system for finding an exploration step in the predictor. If the
Hessian matrices are PSD, then CG can be used. Though
there is no guarantee that the Hessian matrices will be PSD,
we include this baseline for a comprehensive comparison.
The corrector uses multiple SMGD steps.

• PC-Hessian-MINRES: same as PC-Hessian-CG, except that
the CG method is replaced with a MINRES solver.

We compare these baselines to two variants of the proposed
method, PC-GN-CG and PC-GN-MINRES, that use Gauss-
Newton approximation of the Hessian matrices. It is expected

that the Gauss-Newton approximation will reduce the running
time of methods that rely on Hessian-vector products. We use
different solvers to study whether the properties of the linear
systems can influence the number of iterations, the running
time, and the Pareto front quality.
Hyperparameter setting. We vary the λ in f1(x) + λf2(x)
for the fairness regularization method. For the PC methods,
we generate one initial solution using 75 optimization steps of
SMGD, followed by 100 predictor-corrector steps in directions
β = [−1, 1]⊤ and β = [1,−1]⊤. For the predictor we used a
step size of 0.1 and 50 max iterations for the solvers, following
the ablation studies explored in [13]. For the corrector we
used a step size of 0.01. We ran SMGD [12] for an increasing
number of iterations (20, 30, and 40 epochs). The best step
size was found to be 0.005 for the descent step.

C. Pareto front Quality

The closer a Pareto front is to the minimal values of
individual objectives, the better. From the results provided in
Figure 2, we make the following observations.
• On the YelpChi dataset, the two PC methods (PC-Hessian-

MINRES and PC-GN-MINRES) are comparable in the
quality of fronts produced by SMGD running for 40 epochs
(which requires notably more time, as we discuss in Sec-
tion IV-D). On the YelpNYC dataset, the front produced
by the predictor-corrector methods completely dominates
the fronts produced by the SMGD methods, even with 40
epochs. On the YelpZip dataset, the fronts produced by the
PC methods are slightly dominated by SMGD that runs for
40 epochs. However, SMGD has a much longer running
time.

• The spread of the fronts generated by SMGD with 20 epochs
is much farther away from the origin than those from the
predictor-corrector methods, which require a similar amount
of time as the SMGD method. Overall, our method is a more
efficient Pareto front generator and is able to find quality
solutions at a faster rate than the multi-gradient descent
algorithm.

• Both the regularization and adversarial training methods are
dominated by SMGD and the PC methods. Furthermore,
each baseline can generate just one solution and thus does
not offer users a choice in the desired final solution.

D. Algorithm Speed

We demonstrate how the proposed Gauss-Newton approx-
imation reduces the running time of the PC methods. We
control the quality of the generated fronts and measure the
time needed for each method to reach the fronts within an
a certain proximity. Based on Figure 2, we regard the fronts
found by SMGD as the target front and measure how long it
takes for other methods to reach it. As shown in Figure 3a,
the method PC-Hessian-CG has substantial speed ups over the
multi-gradient descent method with over a 5-fold of speedup
on YelpChi, a 9-fold of speedup on YelpNYC, and over a
3-fold speedup on YelpZip.

We further compare the running time of PC-GN-CG and
PC-GN-MINRES that use Gauss-Newton approximation with
PC-Hessian-CG and PC-Hessian-MINRES that use the Hes-
sian matrices. From Figures 3b-3d with varying maxIter
for CG or MINRES to solve the linear system Eq. (3),
we can see the the running time is further reduced from
that of PC-Hessian-CG. This indicates that the Gauss-Newton
approximation can reach the same Pareto fronts significantly
faster. On YelpZip, the largest dataset, CG runs slightly faster
than MINRES when the Gauss-Newton approximation is used.
This is due to the fact that it requires fewer backpropagations.
On the two smaller datasets, YelpChi and YelpNYC, CG can
be slower than MINRES when the Hessian is used, since the
reduction in Jacobian evaluations is less significant compared
to the potentially slower convergence of CG when the Hessians
are not guaranteed to be PSD. Overall, Gauss-Newton requires
less running time than Hessian and running CG on the Gauss-
Newton approximation is recommended.

E. Ablation and sensitivity studies

There are several components and hyperparameters of the
proposed methods, and we study their influence on perfor-
mance (i.e., quality of the Pareto fronts and running time).
• Comparing different solvers. In Figure 3, we show the

total running time when using PC-Hessian-MINRES, PC-
Hessian-CG, PC-GN-MINRES, and PC-GN-CG for varying
maximum iterations, and in Figure 4 we show the quality
of the Pareto fronts with maximum iterations set to 10. We
observe that, in general, the Gauss-Newton approximation
results in an overall faster runtime, but that there is no
significant difference when using CG or MINRES. We also
see that the running time does not change meaningfully
when we reduce the number of maximum iterations for
CG and MINRES (for all tests). This indicates that (1)
the Gauss-Newton approximation is quite accurate while
significantly reducing running time of the solvers, and (2)
that the user can safely choose either CG or MINRES
depending on preference (or availability) without affecting
these same metrics.

• The quality of the Pareto fronts with different maximum
iterations for the solvers. We compare the quality of the
Pareto fronts found by our methods with a varied number of
steps of the solvers that find the exploration direction v as in
Eq. (3). Each row in Figures 5 and 6 show that for a fixed
combination of linear system and solver, and for a varying
number of the maximum iterations for CG and MINRES
on the three datasets, we generate more or less the same
Pareto fronts. This allows us to set a very modest number of
maximum iterations for the iterative solver without affecting
the quality of the Pareto fronts.

• The effect of the corrector step. We investigate whether
the corrector is necessary after each predictor step, or if
the predictor’s approximation of the tangent direction is
good enough and the corrector is unnecessary. We run PC-
Hessian-CG with and without the corrector. The results
can be seen in Figure 7. Without the corrector step, the

(a) Running time of PC-Hessian-
CG and SMGD

(b) Running time of PC methods
with 10 iterations for the solvers.

(c) Running time of PC methods
with 25 iterations for the solvers.

(d) Running time of PC methods
with 50 iterations for the solvers.

Fig. 3: (a): Running time of Predictor-Corrector (PC) and SMGD on the three datasets for fake review detection. (b)-(d): Running time of
Predictor-Corrector (PC) methods with Hessian and Gauss-Newton approximation and CG/MINRES solvers, with maxIter = 10, 25, and
50.

Fig. 4: Comparison of the quality of the Pareto front when using Hessian and Gauss-Newton matrices when solving the linear system in
Eq. (3) using MINRES and CG.

(a) PC-Hessian-CG

(b) PC-Hessian-MINRES

Fig. 5: Pareto front quality when varying the number of maximum iterations set for the linear solvers with Hessian matrices.

(a) PC-GN-CG

(b) PC-GN-MINRES

Fig. 6: Pareto front quality when varying the number of maximum iterations set for the linear solvers with Gauss-Newton approximations.

algorithm produces fronts that are slightly dominated by
those generated with a corrector. However, the corrector also
seems to shrink the Pareto fronts (shown in red) towards the
bottom left corner. More Pareto optima can be produced,
extending the fronts produced by the PC-Hessian-CG. This
indicates that the predictor can indeed explore the manifold
of Pareto optima to find new optimal solutions. In summary,
the addition of a corrector step seems to trade off some
spread of the produced solutions for more reduction in the
objective function values where the objectives have the most
competition. Therefore, we choose to utilize the corrector in
all of the experiments.

V. RELATED WORK

Multi-objective optimization has been studied extensively
in numerical optimization [4], [17], [8], [3], [16], [12] and
been applied to machine learning problems, such as multi-task
learning and fair machine learning [22], [11], [14], [13]. We
focus on the predictor-corrector method for its efficiency. Dif-
ferent from [13], [16] that directly use CG and the Pearlmutter
trick to solve Hv = b, we improve efficiency by exploiting
low-rank approximation of the Hessian matrix H and the more
advanced iterative method MINRES.

Solving a linear system for a descent direction v to optimize
a machine learning model is commonly found in second-order
numerical optimization. Second-order methods can exploit the
local curvature information of an objective function, f, to
properly scale the gradient vector for a more robust descent
direction. First-order methods need to fine-tune the step size
in the direction of the negative gradient and this can be

quite time-consuming in practice. The Newton method is a
second-order method that solves the linear system Hv = b,
using iterative methods such as conjugate gradient. With many
parameters to update, as is typical for neural networks, the
Hessian matrix cannot be computed and stored explicitly, and
the Pearlmutter trick is proposed to rely on backpropagation
for fast Hessian-vector product evaluation to solve for v.
Another issue with using H is that it is not guaranteed to
be positive definite and the CG method can have difficulty in
convergence.

Gauss-Newton and Fisher information matrices are low-rank
PSD matrices approximating the Hessian H . These approxi-
mating matrices are not only PSD, but also make the matrix-
vector with v much cheaper to compute without requiring
backpropagation for each iteration of CG that evaluates Hv.
Rather, the approximating matrices are in the form of a
sum of outer products of vectors that can be computed and
stored explicitly. Besides solving Hv = b iteratively, in the
work [15], block diagonal matrices approximation of H are
derived so that direct inverses of the block diagonal matrices
are less expensive to compute. All the previous work optimizes
a single objective and did not aim to speed up the predictor-
corrector framework for MOO.

Other empirical and theoretical comparative analyses of
MINRES and CG have been performed (see e.g., [5]). Previous
work has also demonstrated the effectiveness of MINRES
for MOO (see e.g., [13]) as it is a matrix-free solver that
guarantees a monotonic decrease in the norm of the resid-
ual (of the approximate solution for (3)). However, to our
knowledge, the present study will be the first analysis of

0.4 0.6 0.8 1.0 1.2 1.4
ndcg

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175

xn
dc

g

Chi
Predictor Only
Predictor-Corrector

0.5 1.0 1.5 2.0 2.5
ndcg

−0.01
0.00
0.01
0.02
0.03
0.04

xn
dc

g

NYC
Predictor Only
Predictor-Corrector

0.4 0.5 0.6 0.7 0.8 0.9
ndcg

−0.01
0.00
0.01
0.02
0.03
0.04
0.05

xn
dc

g

Zip
Predictor Only
Predictor-Corrector

Fig. 7: Ablation study performed to analyze the impact of the corrector step.

the computational time and quality of the Pareto front when
using CG and MINRES for applications arising in multiple-
objective optimization. In [13], a comparative analysis is
performed when varying the maximum number of iterations
of the iterative solver. However, in the present study, we show
that we can achieve an accurate Pareto front with even fewer
maximum iterations than those considered in [13].

VI. CONCLUSION

We aim to find Pareto fronts that represent multiple trade-
offs between multiple objective functions. Previous MOO
methods start from a random initial solution or rely on second-
order derivatives, thus they are inefficient. We propose a
first-order approach using the Gauss-Newton approximation
to remove the need for second-order derivatives, and embed
the approach in the predictor-corrector method that generates
Pareto fronts by exploring the manifold with high efficiency.
We apply the method to a fake review detection task on three
datasets, and demonstrate the proposed methods can find high-
quality Pareto fronts using less time.

ACKNOWLEDGEMENT

Sihong Xie is supported in part by the National Science Foun-
dation under Grants NSF IIS-1909879, NSF CNS-1931042, NSF
IIS-2008155, and NSF IIS-2145922. Sean Wang is supported by the
National Science Foundation under Grants NSF CNS-2051037. Any
opinions, findings, conclusions, or recommendations expressed in this
document are those of the author(s) and should not be interpreted as
the views of the National Science Foundation.

REFERENCES

[1] Kai Burkholder, Kenny Kwock, Jiaxin Liu, and Sihong Xie. Certification
and trade-off of multiple fairness criteria in graph-based spam detection.
In CIKM 2021, 2021.

[2] Enyan Dai and Suhang Wang. Say No to the Discrimination: Learning
Fair Graph Neural Networks with Limited Sensitive Attribute Informa-
tion. In WSDM, 2021.

[3] J. Fliege, A.I.F Vaz, and L N Vicente. Complexity of gradient descent
for multiobjective optimization. Technical report, 2018.

[4] Jörg Fliege and Benar Fux Svaiter. Steepest descent methods for mul-
ticriteria optimization. Mathematical Methods of Operations Research,
51(3):479–494, 2000.

[5] David Chin-Lung Fong and Michael Saunders. Cg versus minres: An
empirical comparison. SQU Journal for Science, 2012.

[6] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients
for solving linear systems. Journal of research of the National Bureau
of Standards, 49:409–435, 1952.

[7] C Hillermeier. Generalized Homotopy Approach to Multiobjective Opti-
mization. Journal of Optimization Theory and Applications, 110(3):557–
583, 2001.

[8] Miettinen Kaisa. Nonlinear Multiobjective Optimization, volume 12 of
International Series in Operations Research & Management Science.
Kluwer Academic Publishers, Boston, USA, 1999.

[9] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma.
Fairness-Aware Classifier with Prejudice Remover Regularizer. In
Machine Learning and Knowledge Discovery in Databases, pages 35–
50, 2012.

[10] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[11] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong.
Pareto Multi-Task Learning. In NeurIPS, volume 32, 2019.

[12] Suyun Liu and L N Vicente. The stochastic multi-gradient algorithm for
multi-objective optimization and its application to supervised machine
learning. Technical report, 2019.

[13] Pingchuan Ma, Tao Du, and Wojciech Matusik. Efficient Continuous
Pareto Exploration in Multi-Task Learning. In ICML, 2020.

[14] Debabrata Mahapatra and Vaibhav Rajan. Multi-Task Learning with
User Preferences: Gradient Descent with Controlled Ascent in Pareto
Optimization. In ICML, 2020.

[15] James Martens and Roger Grosse. Optimizing Neural Networks with
Kronecker-Factored Approximate Curvature. ICML, 2015.

[16] Adanay Martín and Oliver Schütze. Pareto Tracer: a predictor–corrector
method for multi-objective optimization problems. Engineering Opti-
mization, 2018.

[17] Quentin Mercier, Fabrice Poirion, and Jean-Antoine Désidéri. A
stochastic multiple gradient descent algorithm. European Journal of
Operational Research, 271(3):808–817, 2018.

[18] Barak A Pearlmutter. Fast Exact Multiplication by the Hessian. Neural
Comput., 6(1):147–160, 1994.

[19] Yousef Saad. Iterative Methods for Sparse Linear Systems, 2nd Ed.
SIAM, 2003.

[20] Yousef Saad and Martin H. Schultz. GMRES: a generalized minimal
residual algorithm for solving nonsymmetric linear systems. SIAM
Journal on Scientific and Statistical Computing, 7(3):856–869, 1986.

[21] Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon
Bottou. Empirical analysis of the hessian of over-parametrized neural
networks. arXiv preprint arXiv:1706.04454, 2017.

[22] Ozan Sener and Vladlen Koltun. Multi-Task Learning as Multi-Objective
Optimization. In Advances in Neural Information Processing Systems,
volume 31, 2018.

[23] Henk A. van der Vorst. GMRES and MINRES, page 65–94. Cambridge
Monographs on Applied and Computational Mathematics. Cambridge
University Press, 2003.

[24] Yongkai Wu, Lu Zhang, and Xintao Wu. On Convexity and Bounds
of Fairness-Aware Classification. In The World Wide Web Conference,
WWW ’19, 2019.

[25] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and
Krishna P Gummadi. Fairness Beyond Disparate Treatment and Dis-
parate Impact: Learning Classification Without Disparate Mistreatment.
In WWW, 2017.

[26] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and
Krishna P. Gummadi. Fairness constraints: A flexible approach for fair
classification. Journal of Machine Learning Research, 2019.

