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Abstract

In practical applications of crowdsourcing, labelers may
be uncertain or refuse to label a particular instance (or
reject) due to the inherent difficulty, and each labeler
may be given a different set of instances for big dataset
applications. These various issues lead to missing and
uncertain labels. Existing crowdsourcing methods have
limited capabilities when these two problems exist. In
this paper, we propose an Iterative Re-weighted Con-
sensus Maximization framework to address the missing
and uncertain label problem. The intuitive idea is to use
an iterated framework to estimate each labeler’s hidden
competence and formulate it as a spectral clustering
problem in the functional space, in order to minimize
the overall loss given missing and uncertain information.
One main advantage of the proposed method from state-
of-the-art Bayesian model averaging based approaches
is that it uncovers the intrinsic consistency among dif-
ferent set of answers and mines the best possible ground
truth. Formal analysis demonstrates that the proposed
framework has lower generalization error than widely
adopted majority voting techniques for crowdsourcing.
Experimental studies show that the proposed frame-
work outperforms state-of-the-art baselines on several
benchmark datasets.

1 Introduction

Classification is a fundamental task in data mining and
machine learning, such as webpage and image classifi-
cation, etc. While it is expensive and sometimes impos-
sible to obtain true labels, crowdsourcing provides an
affordable alternative to collect supervision from non-
experts. For example, given a set of webpages of news
or product descriptions, it is relatively expensive to hire
dedicated experts to read and categorize them. In con-
trast, one can outsource these tasks to non-experts on
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crowdsourcing platforms like Amazon Mechanical Turk.
Crowdsourcing has been a popular and inexpensive

way to collect labels for such tasks. However, these
low price tag labels usually come with a couple of
drawbacks. First, the labels obtained could be noisy and
uncertain due to the difficulty of the task, each labeler’s
perception, lack of interest and insufficient background
knowledge. Second, it is not uncommon for labelers to
have different opinions. For example, given an article
talking about Google’s acquisition of Motorola Mobility,
it could be labeled as an information tech or a business
article. The collected labels are usually inconsistent to
some extent, such that one cannot simply treat these
labels as ground truths. Third, missing and uncertain
labels are ubiquitous in these tasks, especially for large
scale data collected from real applications. In the
example given above, a labeler might not be confident
enough to label that article, so he/she simply omits the
example. Collecting labels for all data is unrealistic for
large datasets, or labelers are simply unable label all
the data. For example, most of the Amazon reviewers
review only a couple of products. Therefore, it is highly
unlikely that all available labelers are able to provide
labels for all queries. Lastly, labelers tend to have
different but hidden competence for a task, depending
on many factors such as background knowledge. Giving
the same weights to all labelers is unreasonable, or
at least suboptimal. As the labels provided by less
competent labelers are more noisy and could therefore
contaminate the labels from more competent labelers.
Weighting labels from different labelers should perform
better, yet how to learn the weights and exploit them
effectively are nontrivial. Interestingly, it is hard to pre-
assign a weight vector for labelers as their performance
varies from task to task.

To summarize the challenges, we are given a set
of uncertain, incomplete and inconsistent labels from
which we wish to draw the ground truth while taking
labelers’ competencies into account. We use a toy
example to demonstrate the challenges. In Table 1, the
third label of x1 contradicts the other two labels, which
are incorrect, causing majority voting to fail. For x2,
the first two labels are missing, so there is not enough



Table 1: Uncertain and Incomplete Answers in Crowd-
sourcing

Data Ground truth label 1 label 2 label 3

x1 -1 1 1 -1
x2 1 na na 1
x3 1 1 -1 -1

information to infer the true label. Note that given
an instance, not all labelers necessarily provide a label.
This is different from the semi-supervised setting [15]
(see Section 5).

We propose an IRCM framework (Iterative Re-
weighed Consensus Maximization) to address the above
challenges. As shown in the flow chart in Figure 1, the
proposed framework composes 3 main steps indicated by
arrows in different lines. Unlike previous methods [16,
10, 15], which ignore missing labels, IRCM first fills up
the missing labels by building classifiers (f1, . . . , fℓ in
the chart) from the available labels (Y in the chart)
and data (not shown), and then predicting missing
labels. By doing so, one obtain a completed label matrix
(“Yc” in the chart). This step is shown in red dotted
lines. Next, as shown in green solid lines in the chart,
we infer ground truth (“y” in the chart), by feeding
weights of labelers (initially uniform distributed) and
the completed label matrix to the proposed reweighted
consensus maximization algorithm (RCM for short in
the sequel). As the third step (blue dashed lines), the
estimated ground truth and the completed label matrix
are further used to update each labeler’s competence (w
in the chart). IRCM goes back to the second step, and
the iteration continues until it converges. For a more
detailed description, see Section 2. The summary of
this work is as follows:

� We adopt and improve the CM (Consensus Maxi-
mization) framework for crowdsourcing that mod-
els labelers’ latent consistencies and then use
these consistencies to assign the best possible
groundtruth. It is demonstrated to be theoretically
sound and experimentally effective (Sections 3, 4).

� We adopt the EM framework to provide a prob-
abilistic justification of IRCM, in which, we see
the distinction between IRCM and existing state-
of-the-art methods (Section 2.4), therefore explain
the improved performance achieved via IRCM.

� We demonstrate in Section 3 that CM minimizes
generalization error bound, which is not minimized
by majority voting. While majority voting is widely
adopted in existing crowdsourcing methods, we are
the first to introduce CM to crowdsourcing.

Figure 1: Flow Chart of the Proposed Algorithm

Table 2: Notations for Data
xi ∈ R

d An instance of data
D = {x1, . . . ,xn} Collection of instances

Z = [z1, . . . , zn]
⊤ Ground truth labels of D

yi = [y1

i , . . . , y
ℓ
i ] Labels for xi given by labelers

Y = [y1, . . . ,yℓ]
⊤ Label matrix

Yc ∈ {−1, 1}n×ℓ Completed label matrix
w = [w1, . . . , wℓ] Competencies of labelers

f : Rd → {−1, 1} Classification model

2 Framework

Assume that we are given a sample D = {xi, i =
1, . . . , n}, xi ∈ R

d, with labels provided by ℓ labelers.
These labels are denoted by Y = [y1, . . . ,yn]

⊤ with
yi = [y1i , . . . , y

ℓ
i ], which are the labels (probably miss-

ing) provided by ℓ labelers for xi. If an entry in yi is
missing, it has value 0, otherwise, it is either -1 or 1.
The completed label matrix is denoted by Yc with en-
tries taking value -1 or 1. The objective is to model
labelers’ competencies w = [w1, . . . , wℓ] and infer the
ground truth labels Z = [z1, . . . , zn]

⊤ of D. Each la-
beler can be seen as a mapping from R

d to {−1, 1},
denoted by fk(x), k = 1, . . . , ℓ. The k-th column in Y
is the output when fk evaluated on a subset of D, while
the k-th column in Yc is fk evaluated on all data in D.
These notations are summarized in Table 2.

2.1 Preliminary We briefly introduce the Consen-
sus Maximization (CM) framework [6]. Quite different
from traditional Bayesian model averaging approaches,
CM combines the outputs of multiple models by con-
sidering their cross-example correlation and consisten-
cies. Essentially, CM can resolve conflicts among label-
ers’ opinions and infer the best posisslbe ground truth
in crowdsourcing. In the proposed, we improve CM in
order to infer each labeler’s competence.



Table 3: Notations for Consensus Maximization
oi Object node for xi

hj Group node for the ⌈j/2⌉-th model
ui Probability distribution over oi
qj Probability distribution over hj

ȳj Initial probability distribution over hj

aj Indicates the oi that hj connects to

In CM, classification results of multiple labelers can
be represented by a bipartite graph with two types of
nodes: object and group nodes. xi is represented by
an object node oi. For model k, k = 1, . . . , ℓ, there
are 2 group nodes h2×k−1 and h2×k associated with
it, representing class -1 and 1, respectively. Object
node oi is connected to group node h2×k−1 (or h2×k)
if instance xi is classified to -1 (or 1) by the k-th model.
Object node oi is associated with a random vector
ui = [ui1, ui2] for i = 1, . . . , n, ui1 + ui2 = 1, where ui1

and ui2 represent the probability that node oi belongs
to class -1 and 1, respectively. Similarly, group node
hj is associated with a random vector qj = [qj1, qj2],
qj1 + qj2 = 1 for j = 1, . . . , v, v = 2ℓ where qj1
and qj2 are the probabilities that hj belongs to class
-1 and 1, respectively. These random vectors can be
organized into two matrices Un×2 = [u1, · · · ,un]

⊤ and
Qv×2 = [q1, · · · ,qv]

⊤. The meanings of U and Q
will be clear in Eq.(2.1) and (2.2). The connections
between object and group nodes are given by matrix
An×v = [a1, . . . ,av], where aij = 1 if oi is connected
to hj and 0 otherwise. Each group node has an
initial class prediction ȳj = [1, 0] if node hj represents
class -1 and ȳj = [0, 1] otherwise. Note that ȳj are
fixed and should be distinguished from the label vector
yi = [y1i , . . . , y

ℓ
i ] of instance xi given by ℓ labelers.

Let Ȳv×2 = [ȳ1, . . . , ȳv]
⊤. Table 3 summarizes these

notations.
Figure 2 demonstrates how to construct a bipartite

graph in CM. Assume the missing labels in Table 1
are filled up and the resulting labels are shown in
Figure 2(a). The corresponding bipartite graph is shown
in Figure 2(b). Here we have 3 models (f1, f2 and f3)
and two classes, so we need 6 group nodes sitting on the
right of the bipartite graph. On the left hand side there
are 3 object nodes {o1, o2, o3} representing x1, x2 and
x3. x1 is classified to 1, 1 and −1 by models f1, f2 and
f3 (row 1 in Figure 2(a)). Therefore, o1 is connected to
h2×1−1, h2×2−1 and h2×3. Similarly, o2 is connected to
h2×1, h2×2−1 and h2×3−1, since it is classified to −1, 1, 1
by three models, respectively (row 2). Lastly, row 3
gives connections between o3 and h1, h4 and h6.

(a) Three instances with their

labels given by three models

(b) The bipartite graph repre-

senting the labeling

Figure 2: Bipartite graph used in CM

The objective of CM can be expressed as follows:

min
Q,U

∑n
i=1

∑v
j=1 aij‖ui − qj‖

2 + α
∑v

j=1 ‖qj − ȳj‖
2

s.t. ui1, ui2 ≥ 0, ui1 + ui2 = 1, i = 1, . . . , n

qj1, qj2 ≥ 0, qj1 + qj2 = 1, j = 1, . . . , v

The term
∑v

j=1 aij‖ui − qj‖
2 enforces the proba-

bility distribution of the object node oi to be close to
those of the group nodes it connects to and respect the
original class predictions to some extent. Parameter α
controls how much the consensus results qj to be con-
sistent with the initial classification models’ outputs ȳj :
a larger α encourages each qj to be closer to ȳj . The
optimization problem is solved via block-wise gradient
descent, where Q and U are updated using:

(2.1) Qt = (Dv + αI)−1(A⊤U t−1 + αȲ )

(2.2) U t = D−1
n AQt

where Dn = diag{
∑v

j=1 aij , i = 1, . . . , n}, and Dv =

diag{
∑n

i=1 aij , j = 1, . . . , v}, Ȳv×2 = [ȳ1, · · · , ȳv]
⊤ and

the superscript t on U and Q denotes the number
of iterations. It is easy to see that the probability
distribution ui is the average of the qj ’s that are ui’s
neighbors defined by A. Similarly, qj is defined by the
average of probability distributions of the object nodes
ui it connects to, plus αȳj .

In the next section, we transform CM’s formulation
and interpret it as functional spectral clustering, that
essentially use group nodes to associate and link similar
and consistent behaviors among labelers, and in the
same time, observe labelers’ initial class assignments.



2.2 CM as Functional Spectral Clustering Let
bj =

∑n
i=1 aij and define Dλ = diag{

bj
bj+α , j = 1, . . . , v}

and D1−λ = diag{ α
bj+α , j = 1, . . . , v}. According to [6],

Eq.(2.1) and (2.2) can be re-written as

Qt = Dλ(D
−1
v A⊤D−1

n A)Qt−1 +D1−λȲ

= DλPQt−1 +D1−λȲ

= (DλP )tQ0 +

(

t−1
∑

i=0

(DλP )i

)

D1−λȲ

where P = D−1
v A⊤D−1

n A. Let the similarity matrix
P ∗ = A⊤A. Then P is the transition probability matrix
with entries Pkj = P ∗

kj/dk where dk =
∑v

j=1 P
∗
kj . To see

this, a2×l−1 + a2×l = 1 so dk = a⊤k (
∑v

j=1 aj) = ℓ · |ak|

(| · | is the ℓ1 norm). Also (Dn)ii =
∑v

j=1 aij =
ℓ, i = 1, . . . , n, since each object node is connected
to exactly ℓ group nodes. So Pkj = (1/ℓ)(Dv)

−1
kk P

∗
kj .

But (Dv)kk = |ak|, Pkj = (1/(ℓ|ak|))P
∗
kj = (1/dk)P

∗
kj .

Similar to the results in [17], as t → ∞

Q∗ = (I −DλP )−1D1−λȲ

We make the following observations. First, α is
small compared to bj , which is the number of object
nodes connected to hj , especially when the number of
data n is large (α = 2 in [6]). Therefore, Dλ ≈ 1
and D1−λ ≈ 0 but not equal to 0. Q∗ ≈ (I −
P )−1D1−λȲ . We can see that CM is similar to spectral
clustering of group nodes, where the objective is to find
a configuration of qj such that similar group nodes
(similarity measured by how many object nodes they
share) are close in distribution. More specifically, the
solution Q∗ is the harmonic solution which minimizes
the energy function [18]

(2.3) E(Q) =
1

2

∑

j,k

Pjk(qj − qk)
2

In this point of view, the class labels provided by
each base classification model are not used to estimate
the final class distributions, but provide a way to
measure similarity between any two group nodes. This
accounts for the uncertainty of labelers’ opinions in
crowdsourcing. For example, one labeler classifies a
set of examples to be positive, while another labeler
classifies a subset of these examples to be negative, then
there are conflicts. It is hard to say whose desicion is
more “correct” than the other’s. CM resolves these
conflicts by adjusting the classification distributions
of group nodes (each of them defines how a labeler
classifies a subset of examples), such that the agreement

of labeling between these two subsets respects their
similarity. In Section 3, we justify the effectiveness of
CM using this formulation.

2.3 Iterative Re-weighted Consensus Maxi-
mization It is natural that different labelers have dif-
ferent competencies in labeling data. Treating all la-
belers equally when aggregating their decisions is not
optimal. Instead, one should pick up the outputs of the
best ones to make final decisions, or weigh their outputs
using competencies. Nonetheless, the original CM does
not take competence or accuracy of base classifiers into
account and therefore, is not optimal. To incorporate
weights of base classifiers in CM, there are two ques-
tions to be addressed. First, without any ground truth
or supervision, how can one estimate the competence of
each labeler? Second, even if the weights are available,
how to use this information effectively in CM?

For the first question, instead of requiring accurate
computation of competencies, we ask only for a rough
estimation, such that the relative order is preserved.
For example, if labeler Bob is doing better than labeler
Alice, we only need an estimation of competencies
which weighs Bob higher than Alice, instead of an
estimation close to the real competence of the labelers.
Assume that CM outputs a reasonable estimation of
ground truth, we use this information to estimate the
competencies of labelers, denoted by wj , j = 1, . . . , ℓ.

The second problem is more difficult to solve. A
straightforward solution is to put the weights in the
original CM algorithm by weighting ‖qj − ȳj‖

2 using
wj , j = 1, . . . , v. The higher the wj , the more penalty
will be incurred when qj deviates more from ȳj , while
a lower weight allows the final model qj to go relatively
far away from its original distribution ȳj . However, we
experimentally find out that this seemingly reasonable
and simple method does not work as expected.

We propose to weight the base models in CM via
functional space sampling. Specifically, we emphasize
“good” functions by sampling them more frequently.
We generate a sample of functions by adding new
columns to the completed label matrix Yc. The resulting
matrix is called the extended label matrix, also denoted
by Yc, but with new columns added. The new columns
are generated entry-wise. That is, for each entry of
a new column in Yc, we randomly pick the entries in
the same row in the first ℓ columns of Yc, where the
probability that an entry being picked is proportional
to the weight on that column. More formally, suppose
we need to add C new columns,

(2.4) Yc(i, j
′) = Yc(i, j) with probability wj/K

where j′ = ℓ + 1, . . . , ℓ + C, j = 1, . . . , ℓ and K =



∑v
j=1 wj . In this way, the new columns can be seen

as a weighted sample of the original ones. The IRCM
algorithm is given in Algorithms 1 and 2. Note that Yc

in line 10 of Algorithm 1 refers to the completed label
matrix without extension. The extension of Yc is done
in Algorithm 2 with a new estimation of w.

The idea of column generation is similar to impor-
tance sampling [13], which emphasizes on certain in-
stances by sampling them more frequently. Instead of
sampling instances in the usual sample space, we are
sampling functions in functional space. Suppose we
have a space of functions F = {f : R

d → {−1, 1}}.
Each column in the label matrix can be seen as a func-
tion f ∈ F evaluated on data points in D. Though we
have no access to the entire functional space F , exist-
ing columns can be seen as a finite sample of functions
from F . We denote this sample of functions by F0.
Assume that the other good functions outside F0 are
similar to the good ones in F0, we would like to uncover
more good functions in F . Since the “goodness” and
“badness” of a function in F0 are only estimated on a
finite number of data, there are some uncertainties as-
sociated with them. There is no reason to assert that
a good function in F0 can be generalized well to all in-
stances. We also cannot simply reject “bad” functions
from F0, as they might be doing well on some unseen
samples. A good function should be a mixture of func-
tions in F0 with the constraint that they are closer to
good functions than to bad functions in F0. There-
fore, we do not take one of the existing columns as a
whole to form a new column, but sample at the entry-
wise level (see Eq.(2.4)). We show in the next section
that this functional space sampling method might also
be viewed as finding a good similarity measure between
instances. Also, in Section 3, we justify this sampling
method using generalization error bound analysis. We
denote the newly generated functions together with the
original functions F0 as σ(F0), which can be seen as
equivalent to Yc.

Algorithm 1 IRCM with Missing Labels

1: Input:Data D, incomplete label matrix Y
2: Output:Inferred ground truths Z
3: for all labeler j ∈ {1, . . . , ℓ} do

4: Build a classifier using Y (:, j) and D.
5: Complete Y (:, j) using this classifier to get Yc(:, j).
6: end for

7: Infer Z using CM from Yc.
8: Estimate competencies of labelers w.
9: while Not converge do

10: Infer Z from Yc and w using Algorithm 2.
11: Re-estimate w.
12: end while

Algorithm 2 RCM: Reweighted CM

Input: Yc (the completed label matrix), w (weights on
each column), C (number of columns to generate)
Output: Inferred ground truths Z.
for j = ℓ+ 1 → ℓ+ C and i = 1 → n do

Assign value to Yc(i, j) according to Eq.(2.4).
end for

Estimate Z by applying to Yc.

2.4 A probabilistic View of IRCM We formulate
IRCM using EM framework to interpret the functional
space sampling method. Using this formulation we
compare IRCM to the state-of-the-art crowdsourcing
methods [16, 10] and bring out the distinction of IRCM.
Given sample D and the extended and completed label
matrix Yc, we need to infer two groups of parameters:
competencies w and ground truths Z. Let Z be the
latent random variables, the goal is to maximize the
log-likelihood

(2.5) Pr[Y |D,w] =
n
∑

i=1

ln Pr[yi|w,xi]

In the following, all probabilities depend on D, but to
keep the formula uncluttered, we only write down this
dependency explicitly when necessary. Take the latent
variables into account and use the total probability for-
mula, Pr[yi|w] = E{Pr[yi|w, zi]} where the expecta-
tion is taken over Pr[Z]. It is difficult to maximize
Eq.(2.5) directly, we instead maximize its lower bound
∑n

i=1 E{ln Pr[yi|w, zi]} by the concavity of the logarith-
mic function ln and Jensen inequality.

Assume either Pr[z = 1] = 1 or Pr[z = −1] = 1 and
consider the competence as a labeler’s accuracy, namely,
wj = Pr[yji = zi] for any i = 1, . . . , n. Then we model
Pr[yi|w, zi] using Bernoulli model as in [16]

Pr[yi|w, zi] =

ℓ
∏

j=1

w
1−|yj

i
−zi|/2

j (1− wj)
|yj

i
−zi|/2

and the lower bound of Eq.(2.5) can be written as

(2.6)
n
∑

i=1

ln





ℓ
∏

j=1

w
1−|yj

i
−zi|/2

j (1− wj)
|yj

i
−zi|/2





M-step Maximize Take the derivative of Eq.(2.6) with
respect to wj and let it equal to 0 we get

(2.7) wj =

∑n
i=1(1− |yji − zi|/2)

n

E-step Compute Eq.(2.4) To compute Eq.(2.6), we



need to know a particular assignment of labels to Z,
which can be obtained via Pr[Z|D]. We propose a
unique way to derive this probability. Similar to the
work in [15] (refer to related work for more details),
we impose a graph prior over the labels Z, namely,
we construct a similarity graph of instances where
nearby instances are assigned similar labels. Unlike
their work, we incorporate labelers’ competencies in the
graph construction such that the inferred labels directly
depend on the competencies.

In particular, given the competenciesw and original
functions F0, we can generate a sample of functions
σ(F0) (represented by the extended complete label
matrix Yc, see Eq.(2.4)). These generated functions
can be seen as “virtual” labelers whose classification
decisions are weighted combinations of real labelers.
Next, based on σ(F0), we derive a bipartite graph
where functions (instances) are represented by group
(object respectively) nodes and classification results are
represented by the connections between group nodes
and object nodes. This graph can be represented
by a connection matrix A with ℓ + C columns. Re-
write Eq.(2.1) and Eq.(2.2) in the form of random walk
iterations,

Zt = P̃Zt−1 + αD−1
n A(Dv + αI)−1Ȳ

where we restrict the soft cluster membership U to
hard partition indicators Z. It is easy to recognize this
formula as the random walk with probability transition
matrix P̃ = D−1

n A(Dv + αI)−1A⊤, which encodes the
similarity between instances by the number of group
nodes two instances share, normalized by some factors.
The iteration converges to the solution maximizing the
posterior:

(2.8) Pr[Z|D] ∝ exp{−Z⊤LZ}

where L = I− P̃ is the graph Laplacian matrix. We can
see that Z is inferred using the function sample σ(F0).

The conjecture is that, with a better estimation
of the competencies and sufficient sampling of the
functional space F , we would be able to recover the
underlying cluster structure of the data. In this way,
IRCM assigns a label to an instance by considering its
neighbors’ labels and consensus among labelers. Note
that the methods in [10, 15, 16] assume that the labelers
are independent given the sample D. They also simply
use labelers’ competencies for weighted majority voting.
In contrast, we are the first to introduce CM to model
consensus among labelers in crowdsourcing. We are
also the first to exploit labelers’ competencies in the
consensus maximization framework. As we shall in
Sections 3 and 4, CM outperforms weighted majority
voting theoretically and experimentally.

3 Formal Analysis

We adopt the functional spectral clustering formulation
(see Section 2.2) to show that CM minimizes general-
ization error bound. We first define a probabilistic met-
ric in the functional space, namely, the space of classi-
fiers [1]. By a theorem provided in [7] and the objective
of spectral clustering algorithm, we show that CM in-
deed selects a model with lower error bound than the
simple majority voting. Finally, we justify the proposed
importance sampling strategy in IRCM.

3.1 Metric in Functional Space In general, sup-
pose (Rd,B, µ) is a measure space where B is a Borel
algebra on R

d and µ is a measure on B. The similarity
between two measurable functions f, g : Rd → R can be
defined by:

(3.9) 〈f, g〉 =

∫

1(f = g)dµ

where 1(·) is the indicator function. We may also
calculate the probability that two functions agree, when
the underlying measure µ is a probability measure Pr[·]:

〈f, g〉 = Pr[f = g]

Accordingly, we define the distance between f and g as
1 − 〈f, g〉. For example, suppose the model of ground
truth is f0, then the generalization error of model f is

(3.10) ǫ(f) = d(f, f0) = 1− 〈f, f0〉 = Pr[f 6= f0]

In reality, we have no access to the complete mea-
sure space, and approximation is required when only
given D = {xi}

n
i=1 ⊂ R

d. Second, in CM, functions
take continuous values in [0, 1], rather than discrete val-
ues {−1, 1}, we should generalize the similarity measure
to functions with real value domain. Therefore, we de-
fine the similarity between two real-valued functions on
any D ⊂ R

d to be

(3.11) 〈f, g〉D =
1

|D|

∑

xi∈D

1(|f(xi)− g(xi)| ≤ ǫ)

where ǫ ∈ (0, 0.5) is a fixed small number used in
the analysis only. An example is given in Figure 3(a)
to demonstrate these concepts. Suppose we have two
functions f1,f2 : R → [0, 1]. They can be seen as two
classifiers for instances with only one real value feature.
The vertical dash lines are the decision planes of f1 and
f2. We also draw the length of ǫ on the y-axis. We
can see that the value of two functions are less than ǫ
on regions D1 and D−1 except D0 (their definitions are
given in the next subsection). So their similarity is the
sum of the lengths of D1 and D−1 according to Eq.(3.11)



(a) Two functions before CM (b) Two functions after CM (c) Two functions before CM in

Q plane

(d) Two functions after CM in

Q plane

Figure 3: Functional spectral clustering

3.2 CM Reduces Functional Difference We
claim and demonstrate that after CM, the distance be-
tween two functions become smaller. In CM, a func-
tion fl is represented by two group nodes h2×l−1 and
h2×l. Each group node is associated with a probabil-
ity distribution qj ∈ R

2, so functions are embedded in
a 2-dimensional space. Figure 3(c) shows how f1 and
f2 in Figure 3(a) are embedded in the plane (q·1, q·2),
where qj , j = 1, . . . , 4 are probability distributions for
group nodes hj , j = 1, . . . , 4. For example, the group
node for the positive class of f2 (blue solid line on the
top in Figure 3(a)) is h3 with probability distribution
q3 = [1, 0]. So in Figure 3(c), it is given by a blue solid
round-ended line on the q·1-axis (shifted for visibility, it
overlaps the axis mathematically). We embed the other
group nodes in the plane in the same way. The points on
the line from (0, 1) to (1, 0) on the plane represents all
classification probability distributions, as the sum of the
coordinates of any point on the line is 1. During its it-
erations, CM gradually adjusts the coordinates of these
group nodes until convergence. This actually changes
the output of the functions in σ(F0), such that the sim-
ilarities between any two functions are preserved to the
maximum extent. In the above example, the similarity
between group nodes h2 and h3 are non-zeros (see Fig-
ure 3(a), the blue solid line in the top (h3) overlaps the
red dotted line in the bottom (h2)), so their probability
representation, q3 and q2, should be pulled closer after
CM. Also, q1 should be even closer to q3 as h1 and h3

represent the same class and overlap more than that h2

overlaps h3, This also applies for q2 and q4.
In particular, before applying CM, a function or

classification model is given by f : Rd → {−1, 1} that

partitions D into disjoint sets:

(3.12) D(f) =
⋃

c∈{−1,1}

Dc(f)

where Dc(f) = {xi ∈ D : f(xi) = c}. Given a
set of functions σ(F0) = {f1, . . . , fℓ+C}, (see Eq.(2.4)
and the paragraph after it), we want to show that
CM minimizes the distance between any two pair of
functions, in order to apply the generalization error
bound in Eq.(3.15). Consider any two functions f1
and f2. As shown in Figure 3(a), we can partition D
into three disjoint subsets D = D−1 ∪ D1 ∪ D0 where
Dc = Dc(f1) ∩ Dc(f2) for c ∈ {−1, 1} and D0 = {x ∈
D : f1(x) 6= f2(x)}. Then the similarity between f1 and
f2 can be decomposed into three terms:

(3.13) 〈f1, f2〉D = 〈f1, f2〉D−1
+ 〈f1, f2〉D1

+ 〈f1, f2〉D0

We claim that the after applying CM, Eq.(3.13) cannot
decrease. First, note that before applying CM, the
third term is zero by Eq.(3.11), as |f1 − f2| > ǫ on D0.
Second, if the similarity between two group nodes from
different classes is non-zero (like h2 and h3 in the above
example), then the distributions of these two nodes will
be adjusted according to how similar they are, such
that the third term in Eq.(3.13) might become non-zero.
For example, in Figure 3(d), q2 and q3 are brought
closer so that they have non-zero similarity, In contrast,
they are perpendicular to each other in Figure 3(c)
with 0 similarity. Accordingly, in Figure 3(b), the blue
solid line in the top and the red dotted line in the
bottom are brought closer such that their difference
in y-axis is within the ǫ window and 〈f1, f2〉D0

> 0.
Therefore, the third term in Eq.(3.13) cannot decrease.
On the other hand, group nodes representing the same
class might not take the highest similarity value 1, so



spectral clustering might pull them away from each
other. However, they are still closer to each other
than to those representing a different class. As spectral
clustering preserves the similarity between group nodes,
if the difference between the output of two functions for
different classes (h2 and h3 in the example) is less than
ǫ, so does the difference of the output of these functions
for the same class (e.g. h1 and h2). Therefore, the
first two terms in Eq.(3.13) should stay the same. For
example, after CM, in Figure 3(d), q3 and q1 do not
overlap each other perfectly as they do in Figure 3(c),
because f1 and f2 do not agree on D0. However, in
Figure 3(b), f1 and f2 are still within a ǫ window.

3.3 IRCM Minimizes Generalization Error
Bound First, the functional sampling method is jus-
tified by minimizing Eq.(3.10). Assume the output of

CM f̂ is a reasonable estimation of f0, namely, d(f̂ , f0)
is relatively small. We would like to find a set of func-
tions such that their center f ′ (CM averages all func-
tions’ output, see Eq.(2.2)) is close to f0.

(3.14) d(f ′, f0) ≤ d(f ′, f̂) + d(f̂ , f0)

d(f̂ , f0) is fixed, so we aim at minimizing d(f ′, f̂), which
can be reduced to finding a set of functions having their
center close to f̂ . This is achieved by sampling the
functions in F0 that are closer to f̂ more frequently.
Note that the similarity between f ∈ F0 and f̂ is the
accuracy of f when f̂ is assumed to be the ground
truths. Therefore, the proposed weighted sampling
strategy in functional space searches a set of functions
to minimize Eq.(3.14).

Second, we justify CM by a theorem in [7]

Theorem 1. Let f̂ be the center of functions in F0.

Then

(3.15) ε(f̂) ≤ inf
f∈G0

sup
g∈G0

d̂(f, g) + sup
g′,g

(d− d̂)(g′, g)

In the theorem, G0 is a set of consistent classifiers,
d̂ is the empirical distance of functions. The final
output of CM is the average of all models, which
corresponds to f̂ in the theorem. The second term in
the bound can be replaced by two terms independent
of the functions in G0 (see Corollary 1 in [7]). Since
we do not have access to G0, we have to use some
approximation by estimating the first term by replacing
G0 with σ(F0). Therefore, the problem reduces to

minimizing the term inff∈σ(F0) supg∈σ(F0) d̂(f, g). We
have proved in previous subsections that the distance
of each pair of functions in σ(F0) is made smaller via
spectral clustering in functional space. Therefore, CM
does lower the upper-bound of generalization error.

Table 4: Summary of Datasets

Tasks # Features # Instances
pltcs vs bsnss 1389 596
pltcs vs tech 1409 597
bsnss vs tech 1326 597

4 Experiments

To create datasets with instances labeled by multiple
labelers, we ask 5 human annotators to label articles
crawled from the Yahoo! news website1. We choose 3
categories of news for experiments (politics (pltcs), busi-
ness (bsnss) and technologies (tech)). The gold stan-
dard labels are provided according to the classification
of Yahoo! news. The reason of using these 3 classes is
that the selected articles can usually be classified into
more than one categories, therefore, it is more confusing
for human to label, introducing more noise in the labels.
For each category, we fetched roughly 300 articles from
the website (900 articles in total). Then we mix them
together and select 5 subsets of 90 articles randomly.
Each labeler labels a subset of articles. Different label-
ers could label the same article and their opinions might
contradict those of others. The resulting label matrix
has 90% missing labels. We then create 3 binary classi-
fication problems by combining articles from any 2 out
of all 3 categories. After text preprocessing such as stop
words elimination, TF-IDF transformation, we vector-
ize the articles in each problem, the properties of the
data of 3 problems are summarized in Table 4.

4.1 Baseline Methods In the experiments, we com-
pare the proposed algorithm with two state-of-the-art
methods dealing with crowdsourcing data in [16] (EM-
PMLA) and [10] (EM-SLME). We refer the readers to
the related work for more details. In EM-PMLA, we
use LBFGS2 in the M-step. In EM-SLME, we use the
L1-regularized logistic regression provided by Liblinear
package [4]. To compare these methods with the pro-
posed method, we feed label matrices with different lev-
els of completeness (see Section 4.2 and 4.3). Besides
these sophisticated methods, we consider simplified ver-
sions of IRCM. The simplest version is just to use the
first step of IRCM to fill up the missing labels and then
apply majority voting (MV). Next, after the first round
of IRCM, an initial set of competence estimates is ob-
tained. Even without the iteration, we can apply these
rough estimates to perform weighted majority voting
(WMV). We also consider a degenerated case of IRCM

1http://news.yahoo.com/
2http://users.eecs.northwestern.edu/~nocedal/lbfgs.

html



which performs CM alone after filling up the missing la-
bels without taking competence into consideration, we
called this fCM. As we shall see, while filling up missing
labels can help, introducing rough competence estimate
has only marginal effect. Although fCM is more effec-
tive than majority voting, the iteration step to refine
the competence estimates is indeed critical to boost up
the performance in IRCM. We adopt libsvm3 to fill up
the missing labels.

4.2 Overall Performance Study We show the
overall accuracy of the proposed method and the base-
line methods in Table 5 and Figure 4. The number of
columns generated in IRCM is fixed to 60 and the num-
ber of iterations is set to 15 (see next section for sensi-
tivity study). For a given binary classification problem
and a number of labelers (corresponding to one column
in the table), we run IRCM 100 times and EM-PMLA
20 times using different combinations of labelers on all
three classification problems. The average accuracy and
standard variance are recorded for each of such combi-
nation. Then these statistics are averaged over all com-
binations of labelers. For example, when there are 3
labelers, then we have

(

5
3

)

= 10 combinations of label-
ers. All algorithms run on these 10 combinations and
each gets 10 copies of accuracies and standard devia-
tions. The accuracies under the header “3 Labelers” in
Table 5 are the averages of these 10 copies. For EM-
SLME, there is no randomness associated with it, so we
do not need to repeatedly run it as other algorithms. If
the standard variance is greater than 0.02 (0.01, respec-
tively), then the corresponding accuracy is underlined
(in italics font, respectively). For a given number of la-
belers, we also average performance of each algorithm
over 3 classification problems, as shown in the columns
with header “avg”.

From the table and the bar charts, we have the
following observations. First, IRCM has the best
performance 7 out of 9 tasks, with the exceptions that
fCM slightly better than IRCM. Second, EM-PMLA
and EM-SLME can sometimes perform even worse
than weighted majority voting. Third, EM-PMLA is
unstable, as it has the highest standard deviation in all
methods across tasks. In contrast, the performance of
IRCM are stable as none of the standard variance is
higher than 0.01. Lastly, though sometimes EM-PMLA
and EM-SLME have performance close to the proposed
method, their accuracy can go down to a very low level.
For example, in task b vs t with 4 labelers, EM-SLME
is worse than random guess with only 37.86% accuracy.

The following conclusions can be drawn out of these

3http://www.csie.ntu.edu.tw/~cjlin/libsvm/

observations, First, even using the first step of IRCM to
fill up missing labels can be helpful for simple strat-
egy like MV. In contrast, the weights learned by these
EM-based methods are not effective when the labels are
sparse. As we have seen, even the simple MV and WMV
(using our weights) work better than weighted voting
in EM-PMLA and EM-SLME. Second, The weights
learned from IRCM are good indicators to pick up la-
belers. When there is a tie in majority voting with an
even number of labelers, the weights can be helpful to
decide which labelers to trust more. Third, As we show
in formal analysis, CM is able to find a consensus results
among labelers such that the generalization error bound
is minimized. This is confirmed by the improved per-
formance of fCM compared to MV and WMV. Lastly,
IRCM iteratively refines and exploits competencies of
labelers. The iterative re-weighted method achieves
even better results than fCM, which does not consider
labelers’ competencies. This demonstrates that, in sit-
uations with multiple labelers such as crowdsourcing,
competence is a critical factor to improving classifica-
tion performance. This also shows that the functional
space sampling method is an effective way to incorpo-
rate weights in the original CM.

4.3 The effectiveness of filling up missing labels
The proposed framework first predicts the missing labels
before estimating competencies of labelers. Here, we
demonstrate the effectiveness of this missing label filling
up step. Different percentage of missing labels are filled
up, and accuracies are obtained in the same way as we
do in the last section. The number of EM iterations in
EM-PMLA and EM-SLME is set to 15. From Figure 5,
we can see that in most of the cases, the performance of
EM-PLMA (7 out of 9 cases) and EM-SLME (6 out of 9
cases) go up as missing label are filled up, therefore, the
proposed framework does help existing state-of-the-art
methods gain performance.

4.4 Sensitivity Study We study how the perfor-
mance of IRCM varies with the number of iterations
with different number of labelers. IRCM in the first it-
eration is equivalent to fCM with uniform weights on
labelers. In Figure 6, we plot the average accuracy with
standard variance over 100 trials as error bars. From
these figures, we can see that the accuracy of IRCM be-
comes better and better in 7 out of 9 cases, with two
exceptions in Figure 6(b) and Figure 6(d), where the ac-
curacies of IRCM go down slightly, but still better than
those of the baseline methods. Therefore, we demon-
strated the effectiveness of incorporating weights in CM
in an iterative manner. The number of iterations re-
quired to converge is generally quite small (< 5).



Table 5: Overall Performance

3 Labelers 4 Labelers 5 Labelers

Tasks p vs b p vs t b vs t avg p vs b p vs t b vs t avg p vs b p vs t b vs t avg
EM PMLA 0.5899 0.5876 0.5429 0.5735 0.6120 0.6138 0.5572 0.5943 0.6312 0.6439 0.5662 0.6138
EM SLME 0.8780 0.5618 0.5224 0.6541 0.8923 0.6070 0.3786 0.6260 0.8792 0.5059 0.5611 0.6487

MV 0.8664 0.6576 0.5578 0.6939 0.8101 0.5983 0.5307 0.6464 0.8826 0.6566 0.5477 0.6956
WMV 0.8664 0.6576 0.5578 0.6939 0.9027 0.6941 0.5568 0.7179 0.8826 0.6566 0.5477 0.6956
fCM 0.8693 0.8154 0.6240 0.7696 0.9107 0.7374 0.6144 0.7542 0.8876 0.7605 0.6248 0.7576
IRCM 0.8809 0.8068 0.6513 0.7797 0.9082 0.8028 0.6683 0.7931 0.9107 0.7859 0.6654 0.7873
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Figure 4: Overall accuracy comparison

5 Related Works

Crowdsourcing is a protocol to collect information using
human intelligence. Both EM-PMLA[16] and EM-
SLME [10] model the accuracy/expertise of labelers,
which is utilized to learn a classification model and the
ground truth simultaneously. [16] differs from [10] in
that the former assumes that the expertise of a labeler
depends not only on the given labels, but also on which
data that labeler is labeling. In the high level of view,
IRCM is similar to these works, as they all learns
competencies and ground truths at the same time.
IRCM also bears some similarity to the work in [15] by
assuming the graph prior over the ground truths (see
Eq.(2.8)). However, IRCM differs from these methods.
First, IRCM fills up missing labels rather than assumes
that they do not exist. When labels are noisy and
sparse, ignoring missing labels can introduce more bias
and variance to the estimation. Second, we introduce
CM to infer the ground truths, while previous work
use majority voting. Third, IRCM exploits labelers’
competencies in a different way, namely, importance
sampling in functional space, previous works simply use
competencies as weights in majority voting.

In [14, 11, 3], they consider the problem of active
learning in the multiple labelers settings. Since labels
are not free, therefore, acquiring the most desirable la-
bels should be preferred. Note that these strategies can
produce label matrices with missing values. For exam-
ple, different labelers are given different sets of instances
according to the active learning strategy. Therefore,
rather than being comparable to the proposed algo-

rithm, the algorithms in these previous works can be
incorporated in the proposed framework in this paper.

The problem of inferring ground truth from multi-
ple annotators is similar to the problem of ensemble
classification[2]. The difference is that the labels in
ensemble methods usually come from classifiers, while
the labels in crowdsourcing come from human efforts.
However, they’re similar in light of the noise and in-
consistency in labels. One of the most common way
to combine multiple classifiers is via majority voting,
which can be generalized to weighted majority voting.
As pointed out in the formal analysis (Section 3), ma-
jority voting ignores the correlations between instances,
therefore is ineffective when the noise level in labels is
high. Recently, consensus learning algorithms are re-
ceiving increasing interests. These learning algorithms
aim at bringing consensus to multiple clustering and/or
classification models and achieving better performance.
[5, 12, 9, 8] are examples of consensus clustering. More
recently, [6] proposes a general framework to combine
the output of multiple classification and clustering mod-
els, demonstrating superior performance to simple ma-
jority voting. IRCM improves CM by introducing iter-
ative importance sampling in functional space.

6 Conclusion

In this paper, we proposed an iterative re-weighted
framework (IRCM) to solve the missing and uncertain
label problems in crowdsourcing tasks. The main chal-
lenges of the problem are: no gold standard is avail-
able, labels for an instance are usually inconsistent and
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Figure 5: Accuracies of EM-PMLA and EM-SLME with different percentage of missing labels completed

noisy. The proposed algorithm first fills up missing la-
bels, then hidden competence of labelers are modeled
and exploited in an iterative manner. Based on CM,
we proposed a novel way to use labelers’ competencies,
namely, as weights for functional space sampling. Be-
sides, the framework can be formulated as an EM algo-
rithm, where we can see the difference between IRCM
and other existing state-of-the-art methods. The frame-
work is theoretically sound and outperforms other base-
line methods most of the time.
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