1 chapter 1

Definition 1.1 (Homeomorphism). A bijection $f : X \to Y$ is called a homeomorphism between two topological spaces X and Y if f and f^{-1} are continuous mappings.

Definition 1.2 (Connected Topological Space). A topological space is connected if it is not the union of two non-empty, open, disjoint subspace topologies.

2 chapter 2

Definition 2.1 (Filter). Given a set X, a filter \mathcal{F} on X is a nonempty family of nonempty subsets of X such that

- if $A \in \mathcal{F}$ and $A \subset B$, then $B \in \mathcal{F}$
- if $A_1, A_2 \in \mathcal{F}$, then $A_1 \cap A_2 \in \mathcal{F}$

Examples:

- Principal filter: given a subset Y of X, the family of subsets containing Y is a filter.
- Frechet filter is the family of all cofinite subsets of X.
- Free filter: \mathcal{F} is a free filter if $\bigcap_{A \in \mathcal{F}} A = \emptyset$.

Remarks: A principal filter is not free; A filter is free iff it contains the Frechet filter.

Proof. All subsets in a principal filter contain a common subset Y in X, so their intersection is not empty. The intersection of all subsets in a Frechet filter is empty. Consider the subsets A such that X

A = x where $x \in X$, they are contained in the Frechet filter, yet their intersection is empty: $\bigcup_A A^c = X$ where A is as described above. On the other hand, if a filter does not contain a Frechet filter, then there is a cofinite subset $B \subset X$ and $B \notin \mathcal{F}$. $\forall A \in \mathcal{F}, A \notin B$, because otherwise, by the property of filters, $B \in \mathcal{F}$. $B^c \notin A^c$, so the union of all A^c cannot cover X, namely, $\bigcap_{A \in \mathcal{F}} A \neq \emptyset$ and \mathcal{F} is not a free filter. $(\bigcap_{A \in \mathcal{F}} A)^c = \bigcup_{A \in \mathcal{F}} A^c$

Remark: given $Y \subset X$, the principal filter \mathcal{F}_Y is an ultra filter iff |Y| = 1.

Proof. If |Y| = 1, then for $A \subset X$ and $A \notin \mathcal{F}$, $\mathcal{F}_Y \cup A$ is not a filter, as $Y \notin A$ so any $B \in \mathcal{F}_Y$ would have $A \cap B = \emptyset$. If $|Y| \neq 1$, then take any element $y \in Y$ and add all subset of X containing y to \mathcal{Y} , then we obtain a filter containing \mathcal{F}_Y , so \mathcal{F}_Y is not an ultrafilter.

Proposition 2.2. For a filter \mathcal{F} on X, the following are equivalent:

• For any $Y \subset X$, exactly one of Y or $X \setminus Y$ is in \mathcal{F} .

• \mathcal{F} is an ultrafilter.

Proof. \Rightarrow : If \mathcal{F} is not an ultrafilter, then it is contained in another filter \mathcal{F}' and there is a set $A \subset X$ such that $A \in \mathcal{F}' \setminus \mathcal{F}$. Then $X \setminus A$ is also not in \mathcal{F} , because otherwise, $X \setminus A \in \mathcal{F}'$ and $\emptyset \in \mathcal{F}'$, which is impossible. Therefore we conclude that \mathcal{F} is an ultrafilter.

 $\Leftarrow: \text{ If } \mathcal{F} \text{ is an ultrafilter, then } \mathcal{F} \text{ must contain at least one of } Y \text{ or } X \setminus Y.$ Otherwise, let $\mathcal{F}' = \mathcal{F} \cup \mathcal{F}_Y$ where \mathcal{F}_Y is the principal filter $A | Y \subset A. \mathcal{F}'$ is also a filter, since if we take any two sets A_1 and A_2 in \mathcal{F}' . Consider the non-trivial cases. Suppose $A_1 \in \mathcal{F}$ and $A_2 \in \mathcal{F}_Y$, we claim that $A_1 \cap A_2 \neq \emptyset$. $Y \subset A_2$, and $A_1 \cap Y \neq \emptyset$ too, because otherwise, $A_1 \subset X \setminus Y$ and by the definition of filters, $X \setminus Y \in \mathcal{F}.$