LECTURE 10: THE WHITNEY EMBEDDING THEOREM

1. The Whitney embedding theorems

Let M be a smooth manifold of dimension m. A natural question is: which manifolds can be embedded into \mathbb{R}^N as smooth submanifolds?

Theorem 1.1 (The Whitney embedding theorem: easiest version). Any compact manifold M can be embedded into \mathbb{R}^N for sufficiently large N.

Proof. Let $\{\varphi_i, U_i, V_i\}_{1 \le i \le k}$ be a finite set of coordinate charts on M so that $\mathcal{U} = \{U_i \mid 1 \le i \le k\}$ is an open cover of M. Let $\{\rho_i \mid 1 \le i \le k\}$ be a partition of unity subordinate to \mathcal{U} . Let $\tilde{\varphi}_i(p) = \rho_i(p)\varphi_i(p)$, extended to 0 outside U. Define

$$\Phi: M \to \mathbb{R}^{k(m+1)}, \quad p \mapsto (\tilde{\varphi}_1(p), \cdots, \tilde{\varphi}_k(p), \rho_1(p), \cdots, \rho_k(p)).$$

We claim that Φ is an injective map. In fact, suppose $\Phi(p_1) = \Phi(p_2)$. Take an index *i* so that $\rho_i(p_1) = \rho_i(p_2) \neq 0$. Then $p_1, p_2 \in \text{supp}(\rho_i) \subset U_i$. It follows that $\varphi_i(p_1) = \varphi_i(p_2)$. So we must have $p_1 = p_2$ since φ_i is bijective.

Next let's prove that Φ is an immersion. In fact, for any $X_p \in T_p M$,

$$d\Phi_p(X_p) = (X_p(\rho_1)\varphi_1(p) + \rho_1(p)(d\varphi_1)_p(X_p), \cdots, X_p(\rho_k)\varphi_k(p) + \rho_k(p)(d\varphi_k)_p(X_p), X_p(\rho_1), \cdots, X_p(\rho_k)).$$

It follows that if $d\Phi_p(X_p) = 0$, then $X_p(\rho_i) = 0$ for all *i*, and thus $\rho_i(p)(d\varphi_i)_p(X_p) = 0$ for all *i*. Pick an index *i* so that $\rho_i(p) \neq 0$. We see $(d\varphi_i)_p(X_p) = 0$. Since φ_i is a diffeomorphism, we conclude that $X_p = 0$. So $d\Phi$ is injective.

Since Φ is an injective immersion, and M is compact, Φ must be an embedding. \Box

Theorem 1.2 (The Whitney embedding theorem: median version). Any compact manifold M of dimension m can be embedded into \mathbb{R}^{2m+1} and immersed into \mathbb{R}^{2m} .

Proof. Suppose we already have an embedding $\Phi: M \to \mathbb{R}^N$ with N > 2m + 1. We will show that we can produce an embedding of M in \mathbb{R}^{N-1} .

To do so, for any $[v] \in \mathbb{RP}^{N-1}$, we let

$$P_{[v]} = \{ u \in \mathbb{R}^N \mid u \cdot v = 0 \} \simeq \mathbb{R}^{N-1}$$

be the orthogonal complement of [v] in \mathbb{R}^N . Let $\Psi_{[v]} : \mathbb{R}^N \to P_{[v]}$ be the orthogonal projection to this hyperplane. We claim that the set of [v]'s for which $\Phi_{[v]} = \Psi_{[v]} \circ \Phi$ is not an embedding has measure zero in \mathbb{RP}^{N-1} , hence it is possible to choose [v] so that $\Phi_{[v]}$ is an embedding. Note that if $\Phi_{[v]}$ fails to be an embedding, we must have either $\Phi_{[v]}$ is not injective, or $\Phi_{[v]}$ is not an immersion. First let's consider [v]'s so that $\Phi_{[v]}$ is not injective. Then one can find $p_1 \neq p_2$ so that $\Phi_{[v]}(p_1) = \Phi_{[v]}(p_2)$, i.e. $0 \neq \Phi(p_1) - \Phi(p_2)$ lies in the line [v]. In other words, $[v] = [\Phi(p_1) - \Phi(p_2)]$. So [v] must lie in the image of the map

$$\alpha: (M \times M) \setminus \Delta_M \to \mathbb{RP}^{N-1}, \quad (p_1, p_2) \mapsto [\Phi(p_1) - \Phi(p_2)],$$

where $\Delta_M = \{(p, p) \mid p \in M\}$ is the "diagonal" in $M \times M$. Since $(M \times M) \setminus \Delta_M$ is of dimension 2m < N - 1, Sard's theorem implies that the image of α is of measure zero in \mathbb{RP}^{N-1} .

Next let's consider [v]'s so that $\Phi_{[v]}$ is not an immersion. Then there exists some $p \in M$ and some $0 \neq X_p \in T_p M$ so that $(d\Phi_{[v]})_p(X_p) = 0$, i.e. $(d\Psi_{[v]})_{\Phi(p)}(d\Phi)_p(X_p) = 0$. Since $\Psi_{[v]}$ is linear, $d\Psi_{[v]} = \Psi_{[v]}$. It follows that $0 \neq (d\Phi)_p(X_p)$ is in [v], i.e. $[v] = [(d\Phi)_p(X_p)]$. In other words, [v] lies in the image of

$$\beta: TM \setminus \{0\} \to \mathbb{RP}^{N-1}, \quad (p, X_p) \mapsto [(d\Phi)_p(X_p)],$$

where $TM \setminus \{0\} = \{(p, X_p) \mid X_p \neq 0\}$ is an open submanifold of TM. Again since TM has dimension 2m < N - 1, by Sard's theorem, the image of β is of measure zero in \mathbb{RP}^{N-1} .

To see that M can be immersed into \mathbb{R}^{2m} , we first embed M into \mathbb{R}^{2m+1} , then repeat the last step, with the modification that we choose $X_p \in T_p M$ so that $|X_p| = 1$. \Box

Theorem 1.3 (The Whitney embedding theorem: regular form). Any smooth manifold of dimension m can be immersed into \mathbb{R}^{2m} and embedded into \mathbb{R}^{2m+1} .

Proof. c.f. Lee's book.

Theorem 1.4 (The Whitney embedding theorem: strongest version). Any smooth manifold of dimension m can be immersed into \mathbb{R}^{2m-1} and embedded into \mathbb{R}^{2m} .

Remark. Well, there exists ever stronger results! e.g.

- Any compact orientable surface embeds to \mathbb{R}^3 .
- For $m \neq 2^k$, any smooth *m*-manifold embeds to \mathbb{R}^{2m-1} . (But if $m = 2^k$, \mathbb{RP}^m cannot be embedded into \mathbb{R}^{2m-1}).
- Any smooth m manifold can be immersed into $\mathbb{R}^{2m-a(m)}$, where a(m) is the number of 1's that appear in the binary expansion of m.

2. Examples

Example. (Embedding of $\mathbb{T}^2 = S^1 \times S^1$ into \mathbb{R}^3 :)

Recall that

$$\mathbb{T}^2 = S^1 \times S^1 = \{ (x^1, x^2, x^3, x^4) \mid (x^1)^2 + (x^2)^2 = 1, (x^3)^2 + (x^4)^2 = 1 \}.$$

Then

$$f: \mathbb{T}^2 \to \mathbb{R}^3, \quad (x^1, x^2, x^3, x^4) \mapsto (x^1(2+x^3), x^2(2+x^3), x^4).$$

is an embedding from T^2 to \mathbb{R}^3 . In fact, one can decompose f as $f = g \circ \iota$, where $\iota : \mathbb{T}^2 \hookrightarrow \mathbb{R}^4$ is the standard embedding, and

 $g: \mathbb{R}^4 \to \mathbb{R}^3, \quad (x^1, x^2, x^3, x^4) \mapsto (x^1(2+x^3), x^2(2+x^3), x^4).$

So Im $(d\iota)_p$ at $p = (x^1, x^2, x^3, x^4)$ is spanned by $X_p = \langle x^2, -x^1, 0, 0 \rangle$ and $Y_p = \langle 0, 0, x^4, -x^3 \rangle$, and $(2 + x^3 - 0 - x^1 - 0)$

$$dg = \begin{pmatrix} 2+x^3 & 0 & x^2 & 0\\ 0 & 2+x^3 & x^2 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

hat at any $p = (x^1, x^2, x^3, x^4) \in \mathbb{T}^2$,

Now it is easy to check that at any $p = (x^1, x^2, x^3, x^4) \in \mathbb{T}^2$, $da_1(X_1) = \langle x^2(2+x^3), -x^1(2+x^3), 0 \rangle$

$$dg_p(X_p) = \langle x^2(2+x^3), -x^1(2+x^3), 0 \\ dg_p(Y_p) = \langle x^1x^4, x^2x^4, -x^3 \rangle$$

are linearly independent.

Example. (Embedding of \mathbb{RP}^2 into \mathbb{R}^4 :)

Consider the map

$$f: S^2/ \sim = \mathbb{RP}^2 \to \mathbb{R}^4, \quad [(x^1, x^2, x^3)] \mapsto ((x^1)^2 - (x^2)^2, x^1x^2, x^1x^3, x^2x^3).$$

Obviously this is well-defined. It is not hard to check that f is injective.

To prove that f is immersion is a little it more complicated. Since the map

$$(x^1, x^2, x^3) \mapsto [(x^1, x^2, x^3)]$$

is a local diffeomorphism from S^2 to \mathbb{RP}^2 , it is enough to check that the map

$$g: S^2 \to \mathbb{R}^4$$
, $(x^1, x^2, x^3) \mapsto ((x^1)^2 - (x^2)^2, x^1 x^2, x^1 x^3, x^2 x^3)$.

is an immersion. To prove this, we note that from the decomposition

$$g: S^2 \stackrel{\iota}{\hookrightarrow} \mathbb{R}^3 \stackrel{h}{\to} \mathbb{R}^4$$

we have $\operatorname{Im}(dg) = dh(\operatorname{Im}(d\iota))$, where

$$h: \mathbb{R}^3 \to \mathbb{R}^4, \quad (x^1, x^2, x^3) \mapsto ((x^1)^2 - (x^2)^2, x^1 x^2, x^1 x^3, x^2 x^3).$$

Obviously $\operatorname{Im}(d\iota)$ is spanned by any two of the vectors $X_p = \langle x^2, -x^1, 0 \rangle$, $Y_p = \langle x^3, 0, -x^1 \rangle$ and $Z_p = \langle 0, x^3, -x^2 \rangle$ at the point $p = (x^1, x^2, x^3) \in S^2$, and

$$dh = \begin{pmatrix} 2x^1 & -2x^2 & 0\\ x^2 & x^1 & 0\\ x^3 & 0 & x^1\\ 0 & x^3 & x^2 \end{pmatrix}$$

It follows that

$$dh(X_p) = \langle 4x^1x^2, (x^2)^2 - (x^1)^2, x^2x^3, -x^1x^3 \rangle, dh(Y_p) = \langle 2x^1x^3, x^2x^3, (x^3)^2 - (x^1)^2, -x^1x^2 \rangle, dh(Z_p) = \langle -2x^2x^3, x^1x^3, -x^1x^2, (x^3)^2 - (x^2)^2 \rangle$$

Now one can check that at any $p = (x^1, x^2, x^3) \in S^2$, two of these vectors are linearly independent.