Math 535 Homework 4
 Due February 29

In this homework, an entire function means a function that is analytic on the whole complex plane.

1) Show that there is no analytic function $f(z)$ on a neighborhood of the origin such that $f\left(\frac{1}{n}\right)=(-1)^{n} \frac{1}{n^{2}}$ for all integers $n>0$. Is the answer different if we replace n^{2} with n^{k} here, for a different positive integer k ?
2) Let $f(z)$ be an entire function such that $f(z)=f\left(3 z+z^{2}\right)$ for all z. Show that $f(z)$ is constant.
3) Let A denote the set of analytic functions $f(z)$ on $B(0,1)$ (the unit disk centered at the origin) such that $\operatorname{Re}(f(z))>0$ for all $z \in B(0,1)$ and such that $f(0)=2$. Find $\sup _{f \in A}\left|f^{\prime}(0)\right|$, and determine the functions in A that achieve this supremum, if there are any.
4) Suppose $g(z)$ is a nonconstant analytic function on $B(0,1)$ that extends to a continuous function on the closure $\operatorname{cl}(B(0,1))$ such that $|g(z)|=1$ whenever $|z|=1$. Show that there is some z in $B(0,1)$ for which $g(0)=0$.
5) Let $p(z)$ be an entire function such that there is a constant $C>0$ and a positive integer n such that $|p(z)| \leq C\left(1+|z|^{n}\right)$ for all z. Show that $p(z)$ is a polynomial of degree at most n.
6) Suppose $q(z)$ is an entire function such that $\int_{\mathbf{R}^{2}}|q(x+i y)| d x d y$ is finite. Show that $q(z)=0$ for all z. (Hint: Look up the mean value theorem for analytic functions, which you may use.)
