Math 535 Homework 3
 Due February 15

1) Find a Möbius transformation T taking the circle $|z|=1$ to the circle $|z+2|=1$, such that $T(-1)=-3$ and $T(i)=-1$.
2) $\# 2$, p. 108 of Ahlfors
3) $\# 2$, p. 120 of Ahlfors
4) Suppose γ is a curve parameterized by a function $z(t)$ on $[a, b]$, and suppose $f(z)$ is an analytic function on the image of $z(t)$. Define $f(\gamma)$ to be the curve parameterized by $f(z(t))$ on $[a, b]$. Show that for any continuous function $g(z)$ on a neighborhood of the image of $f(z(t))$, one has

$$
\int_{\gamma} g(f(z)) f^{\prime}(z) d z=\int_{f(\gamma)} g(z) d z
$$

5) Suppose $f(z)$ is analytic on a (connected) region Ω such that $\operatorname{Re}(f(z))>0$ for all z. Show that for every closed curve γ in Ω the following holds.

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

6) Suppose $f(z)$ is analytic on (the image of) a closed curve γ, such that $|f(z)|=1$ on γ. Show that the following quantity is an integer multiple of $2 \pi i$:

$$
\int_{\gamma} \bar{f}(z) f^{\prime}(z) d z
$$

