
Be General and Don’t Give Up Consistency in
Geo-Replicated Transactional Systems

Alexandru Turcu, Sebastiano Peluso, Roberto Palmieri and Binoy Ravindran

Virginia Tech
{talex;peluso;robertop;binoy}@vt.edu

Abstract. We present Alvin, a system for managing concurrent trans-
actions running on a set of geographically distributed sites. Alvin sup-
ports general-purpose transactions, and guarantees strong consistency
criteria. Through a novel partial order broadcast protocol, Alvin maxi-
mizes the parallelism of ordering and local transaction processing. Alvin
processes read-only transactions either locally or globally, according to
the selected consistency criterion, and orders only conflicting transac-
tions across all sites. We built Alvin in the Go language and con-
ducted an evaluation study relying on the Amazon EC2 infrastructure
and Paxos- and EPaxos-based state machine replication protocols as
competitors. Our experimental results reveal that Alvin provides sig-
nificant speed up for read-dominated TPC-C workloads and on 7 data-
centers by as much as 4.8x when compared to EPaxos, and up to 26%
in write-intensive workloads.

Keywords: Geo-Replication, Transaction, Distributed System

1 Introduction

In the recent years, transaction processing on geographically distributed com-
puter systems (or “GDS”) received significant research interest [22, 12, 23, 5, 17].
Geo-replicated concurrency control protocols can be classified in two approaches.
The first approach ensures high consistency, but restricts the type of transactions
that are allowed [23, 17]. This enables exploiting specific protocol optimizations
to achieve high performance. The second approach allows general-purpose trans-
actions, but weakens the consistency criterion for better performance [2, 22]. This
has the negative effect of reduced programmability, as programmers must cope
with potential inconsistent states in application behaviors.

Motivated by this gap between strong consistency/poor performance and
weak consistency/good performance, we propose a geo-replicated transactional
system called Alvin, which finds an effective tradeoff between performance and
strong consistency. At the core of Alvin is a novel Partial Order Broadcast
protocol (POB) that globally orders only conflicting transactions and minimizes
the number of communication steps for non-conflicting transactions. While the
idea of defining the agreement of consensus on the basis of message semantics
is not new and has been previously introduced in Generalized Consensus [13] or



Generic Broadcast [19], POB encompasses a novel approach for ordering trans-
actions’ commits that overcomes the limitations of existing single leader-based
solutions (i.e., Generalized Paxos [13]) when deployed in GDS. POB does not rely
on a designated leader to either order transactions or support conflict resolution
in case of conflicting concurrent transactions.

POB has been designed to inherit the benefits of state-of-the-art, multi-
leader, state machine replication protocols specifically proposed for GDS such
as Mencius [16] and EPaxos [17], and, at the same time, to overcome their draw-
backs. In particular, POB, like Mencius [16], has the advantages of defining the
final order of messages on the sender nodes. Typically, this technique avoids ex-
pensive distributed decisions by determining an a priori assignment of delivered
positions to messages. This approach suffers from potentially expensive waiting
conditions that are needed to ensure that the delivery of a message in position
p does not precede the delivery of a message in position p′ < p. However, POB,
unlike Mencius, relies on a quorum of replies, instead of waiting for the informa-
tion about delivered positions from all nodes. This makes POB’s performance
robust even in scenarios where nodes are far apart (as is often the case in GDS),
or when the message sending rate is unbalanced among nodes.

On the other hand, POB, like EPaxos [17], may adjust the order of a mes-
sage that has been already proposed, according to its dependencies, to reduce
communication steps in scenarios of no conflicting proposals of dependent mes-
sages. However, unlike EPaxos, POB does not need to build a dependency graph
of received messages and avoids the execution of complex tasks on that graph.
Such housekeeping operations can be significantly expensive in transaction pro-
cessing: the number of dependencies in the dependency graph can rapidly grow
when a transaction’s size and data contention increases.

Roughly, in POB, each node is the leader of transactions originating on it
and is responsible for assigning a final position to those transactions. A node
has a predefined and exclusive subset of positions that can be used for the
assignment. As in Mencius, transactions can be delivered in the order defined by
their position numbers. However, unlike Mencius, the delivery of a transaction
at a certain position does not need to wait for the notification of all previous
positions. This is because, besides a position, a transaction T is associated with
a set of dependencies, namely, the set of transactions conflicting with T that
must precede T in the order defined by POB. T ’s leader computes the position
and the dependencies of T on the basis of a partial view of the system built by
means of quorums. POB ensures that for any pair of transactions T1 and T2, if
T1 is in T2’s dependencies, then the position of T1 is less than the position of
T2. Therefore, a transaction T is delivered on a node after all transactions in T ’s
dependencies have been delivered on that node.

POB’s advantages are fully exploited by P-CC, a local parallel concurrency
control layer that we propose. P-CC commits non-conflicting transactions in
parallel with conflicting transactions, thereby increasing the parallelism.

Alvin’s processing model allows clients to execute transactions locally on
the spawning site, whose execution is globally certified against concurrent trans-



actions at other sites. To this goal, POB disseminates transactions and P-CC
locally validates and commits them according to the delivery order provided
by POB using a timestamp-based multi-versioning scheme. This combination
allows all transactions, including those aborted, to always observe a consistent
state. This property is mandatory for in-memory deployment in order to avoid
unexpected failures due to inconsistent memory accesses [8].

In addition to these features, Alvin exports design choices to programmers
to customize the POB and P-CC according to the needs of the application and
system at hand. As an example, Alvin offers two strong consistency criteria
that programmers can select, namely, Serializability (SR) [3] and Extended Up-
date Serializability (EUS) [1, 20] (i.e., PL-3U [1]). With the former, transactions
that never write (i.e., read-only) must be broadcast through POB. In contrast,
with the latter, such transactions execute locally at the cost of generating some
non-serializable schedules, which, however, are usually silent to the application.
Another example is the potential for computing a fast decision on the transaction
delivery order, at the cost of quorum bigger than that for a classic decision.

We built Alvin in the Go programming language and evaluated on the Ama-
zon EC2 infrastructure using up to 7 sites, and benchmarks including Bank [11]
and TPC-C [6]. As competitors, we implemented two certification-based trans-
actional systems [18] that rely on MultiPaxos [14] and EPaxos [17] for their
ordering layer. Our experiments reveal that Alvin provides significant speed up
for TPC-C workloads and 7 datacenters by as much as 4.8× when compared to
EPaxos and configured for exploiting EUS. This significant gain is due to a more
efficient execution of read-only workload, which is enabled by EUS’s semantics.
Rather, if Alvin runs under SR, it gains up to 26% over EPaxos because it does
not pay the cost of graph analysis needed by EPaxos for delivering transactions.
On Bank, due to its small transactions and trivial dependency graphs, that cost
is not significant, thus EPaxos behaves similarly to Alvin. MultiPaxos highlights
the drawbacks of having a single leader in GDS, thus its performance is lower
than other (multi-leader) competitors.

The paper makes the following contributions: (1) Alvin, the first geo-replicated
transactional system that guarantees a strong consistency level and supports the
execution of general-purpose transactions in classic asynchronous environments;
(2) a novel multi-leader protocol for partially ordering transactions, enabling
high scalability in geo-replicated environments. In addition, the protocol does
not need complex local processing for determining the final delivery order, yield-
ing reduced client-perceived latency; (3) a publicly available prototype1, which
can be customized for coping with different execution environments.

2 Related Work

Many modern transactional systems employ geo-replication as a means to reduce
data access latency and to provide fault-tolerance and disaster recovery.

1 http://www.hyflow.org/software.html



Spanner [5] is Google’s globally-replicated database. It provides externally-
consistent transactions, but its architecture is complex: it relies on the TrueTime
API, which exposes the absolute time and the uncertainty of the time measure-
ment. Alvin’s architecture is more general and suited for easier deployment.

Walter [22] and MDCC [12] are two solutions designed for geo-replicated
transactional systems. Walter ensures Parallel Snapshot Isolation, which allows
non-conflicting write transactions that span multiple sites to commit even if
they observed incompatible histories. Alvin ensures that all update transactions
are serializable. On the other hand, MDCC commits transactions by using one
instance of Multi-Paxos [14] (or Generalized Paxos [13] to exploit commutative
operations) per replication group containing the accessed data items and, if a
transaction touches multiple replication groups, an additional phase is required
to reach a consensus among the leaders of the various groups.

Lynx [23] is a geo-distributed transactional storage that works by chopping
transactions into sequences of pieces. Each piece executes at a different datacen-
ter, and the system usually replies to clients after the first hop. Lynx’s drawback
is that it does not tolerate aborts after a chain’s first segment.

Finally, we consider EPaxos [17] and Mencius [16] as the closest approaches
to Alvin. EPaxos [17] proposes a partial order protocol for ordering conflicting
commands and it uses a per-command leader to avoid the designated leader of
(Generalized) Paxos. It considers two types of quorums for executing a command:
one is used for implementing a fast-path of one round-trip of communication in
case the command does not conflict with other concurrent commands; the other
is used in case two phases of communication are required to agree on the order.

EPaxos yields high performance but it has several drawbacks when plugged
in transactional processing or in the presence of read operations. In fact, af-
ter having agreed on the dependency set for a command, each node adds that
command to a dependency graph and its execution is in accordance with an
order computed over the strongly connected components of that graph. In case
a command represents a transaction or even a read operation, the client has to
wait until the command’s outcome is available, thus putting the graph analysis
into the execution’s critical path. Alvin is not based on graph analysis because
dependencies are already available when the transaction attempts to commit,
thus resulting in better performance.

At the core of Mencius’ [16] ordering protocol there is the fixed assignment
of sending slots to nodes. A sender can decide the order of a message only after
hearing from all nodes. This approach results in poor performance in case there
is a slow or faraway node, as in geo-replication.

3 Assumptions and System Model

We assume a set of geographically distributed sites Π = {P1, P2, . . . , PN} that
cooperate to synchronize their activities on common shared data. They rely on
a wide area network as the communication infrastructure, therefore we assume
an asynchronous distributed system. We do not assume any specific distribution



of network delays and we do not upper-bound them either. Every message may
experience an arbitrarily large, although finite, delay.

Each site (or node) can be seen as a logical representation of a datacenter.
Managing the synchronization within each datacenter is an orthogonal problem
which we scope out in this paper. Each site is equipped with the entire shared
data set, thus transactions running on that site can access data locally.

We assume that the total number of sites is equal to N , where at most
f <

⌈
N
2

⌉
of them can be faulty at any time, thus at least a majority of nodes

is always correct. In this paper we assume sites fail according to the crash-
stop failure model [3] and we scope out any malicious behavior. In any ordering
communication step, a node contacts all the sites and waits for a quorum Q of
replies. We define two types of quorum size: a classic quorum (CQ) size and a
fast quorum (FQ) size. We assume that both CQ and FQ are at least equal to⌊
N
2

⌋
+ 1. This way any two quorums always intersect, thus ensuring that, even

though f failures happen, there is always at least one site with the last updated
information that we can use for recovering the system. The values assumed by
CQ and FQ are configuration-dependent, and they will be specified throughout
the presentation of the communication layer.

In order to eventually reach an agreement on the order of transactions when
sites are faulty (e.g., a datacenter is unreachable), we assume that the system
can be enhanced with the weakest type of unreliable failure detector [10] that is
necessary to implement a leader election service [9].

4 Alvin: Geo-Replicated Transactional System

We propose simple object-oriented interfaces, where all accesses (Read, Write)
to shared objects are enclosed between Begin and Commit operations.

Alvin bases its benefits on the exploitation of a partial order of transactions
rather than a total order. In fact, ordering all the transactions’ commits on all
nodes is sufficient to guarantee that all nodes execute the same state transitions,
but it is too strong as a condition, especially in GDS, because it enforces that the
finalization of a transaction is delayed by the completion of even non-conflicting
transactions, thus hampering the system’s scalability. On the contrary, enforcing
that only conflicting transactions are ordered on all nodes (as in Alvin) has
a twofold benefit: it still guarantees that all nodes eventually converge on a
common state, and it allows a degree of parallelism needed for scaling in low
inter-datacenter conflict scenarios (which are the expected workloads in GDS).

The software architecture of Alvin includes two fundamental layers: the
Partial Order Broadcast layer (POB) and the Parallel Concurrency Control layer
(P-CC). POB is in charge of broadcasting transactions to certify and commit
them according to the certification-based approach [18] and in a way such that
conflicting transactions are always delivered in the same order on all nodes. P-
CC is responsible for optimistically executing transactions by always providing
a consistent view of the transactional state, and applying the updates of write
transactions that can commit. This makes Alvin a geo-replication solution also



suitable for in-memory transactional systems, which require that all transactions
(even those aborted) do not observe incorrect states. This requirement has been
defined to be desirable for non-sandboxed environments [8] because reading from
an inconsistent snapshot could generate an application’s unrecoverable failure.

The transactional application executing on top of the platform is composed
of multiple threads balanced on all nodes. According to the certification-based
replication scheme [18], each thread activates and executes a transaction T at
the same node where it is running, recording objects read from and written to in
private spaces called the read-set (T.RS) and the write-set (T.WS) respectively.

T is optimistically executed under the control of P-CC and, when it reaches
the stage where all of its operations have been executed, the executing thread
broadcasts T via the POB layer and waits until T is globally validated and either
aborted or committed. In the former case the application thread has to re-issue
T from its very beginning; in the latter case T ’s updates are applied to the
transactional shared state after the commit of any other transaction preceding T
in the order defined by POB. During the optimistic execution of a transaction,
in fact, the updates of write operations are only buffered in the transaction’s
write-set and they cannot be directly applied to the shared state because the
transaction could abort later on.

The POB layer provides two interfaces to send and receive a transaction T :
POBroadcast(T ), used for broadcasting a transaction T along with its read-set
and write-set; PODeliver(T, {T1, · · · , Tm}), used for delivering a transaction
T to nodes, along with the set of transactions {T1, · · · , Tm}, defined as depsT ,
which conflict with T and must be processed (i.e., certified and possibly com-
mitted) before T . Formally, two transactions T and T ′ are conflicting if at least
one of the following three conditions are verified: (i) T.WS ∩ T ′.WS 6= ∅, (ii)
T.WS ∩ T ′.RS 6= ∅, (iii) T.RS ∩ T ′.WS 6= ∅.

4.1 Partial Order Broadcast Layer

The core idea behind the design of POB is guaranteeing that all nodes agree on
the same delivery order for conflicting transactions. This is because, if two trans-
actions do not conflict, then they can be validated and committed (or aborted)
in any order (i.e., all the orders are equivalent due to the absence of conflicts).
Formally, POB guarantees that any pair of conflicting transactions – i.e., two
transactions that access at least one common object, where at least one of the
accesses is a write operation – are not delivered in different orders on two nodes.

Therefore POB guarantees the following properties:
- P1: Strong Uniform Conflicting Order. If some node delivers message m =

[T, depsT ] before message m′ = [T ′, depsT ′ ] and transactions T and T ′ conflict,
then every node delivers m′ only after m.

- P2: Local Dependency. For any node that delivers message m = [T, depsT ]
before message m′ = [T ′, depsT ′ ] and T and T ′ conflict, then T ∈ depsT ′ and
T ′ 6∈ depsT (i.e., no circular dependency between conflicting transactions).

Property P1 is defined as strong because it does not allow omission of mes-
sages. It is in contrast with the weak order property that, instead, allows the



omission of messages despite the fact that the order of delivery on all nodes is
still preserved. In particular, POB does not allow a scenario in which a node Pi
delivers m before m′ while a node Pj delivers m′ without delivering m, where
m and m′ contain two conflicting transactions. We need the strong version of
this property because in transaction processing, even if the partial order is not
violated, the aforementioned scenario can generate two different outcomes for
the same transaction T ′, enclosed in m′, on the nodes Pi and Pj . As an example,
the P-CC on Pi could abort T ′ because its execution has been invalidated by
transaction T contained in m, while Pj commits T ′.

The property P2 regards the semantics of the interfaces exposed to P-CC. In
particular, when POB delivers a message m′ = [T ′, depsT ′ ] to P-CC, transaction
T ′ has to wait for the completion of all the transactions in depsT ′ before deter-
mining its outcome. This condition is sufficient for ensuring that all transactions
are processed in accordance with the partial order defined by POB. In addi-
tion, POB also guarantees the typical properties of a reliable broadcast service
(Validity, Integrity, Uniform Agreement) [7].

Due to space constraints we report the detailed correctness proofs of POB in
the technical report.

Overview. The idea of enforcing an order only among conflicting commands
has already been specified by the Generalized Consensus [13] and Generic Broad-
cast [19] problems and followed by a set of implementations, e.g., Generalized
Paxos [13], EPaxos [17]. POB improves the above proposals by relying on a fully
decentralized design without leveraging on a stable leader to establish the order
of transactions and without expensive housekeeping computations before issuing
the delivery of a transaction.

The main idea behind POB is to define a deterministic scheme for the as-
signment of delivery slots (i.e., positions in the final order that are associated
with positive integers) to submitted transactions, by following the general design
of communication history-based total order broadcast protocols [7, 16] in which
the delivery order of messages is determined by the senders. In POB, for each
transaction T we define a unique transaction leader tlT that establishes the final
delivery position of T by applying the following rules:

- Rule 1. If a node Pi is T ’s leader (i.e., tlT ), then T can only be delivered in
unused positions numbered with posT , such that posT mod N = i.

- Rule 2. Transaction T ′ is delivered in position posT ′ if and only if, for each
conflicting transaction T delivered in position posT > posT ′ , T ′ ∈ depsT and
T 6∈ depsT ′ , where depsT (respectively depsT ′) is the set of transactions which
T (respectively T ′) depends on.

Rule 1 guarantees that two transactions from different leaders cannot occupy
the same position. However, Alvin is also able to concurrently broadcast mul-
tiple requests from the same node and, as it will be clear later, this could cause
two transactions from the same leader to be assigned the same position number.
Such transactions are deterministically ordered using the transaction identifier.
On the other hand, Rule 2 is specifically defined for satisfying property P2.



The transaction leader tlT for a transaction T is either the sender of T , or any
other elected node if T ’s sender is suspected as crashed by the failure detector.

Protocol. A transaction T , that is submitted to the POB service via the
POBroadcast(T ) interface, goes through four phases: Proposal phase, Decision
phase, Accept phase and Delivery phase.

Proposal phase. The node Pi, acting as the leader of T (i.e., tlT ), selects the
next available position number for T to be proposed to all the other nodes. This
position, named posT , is the smallest number among the ones allowed by Rule
1 and greater than any other position that Pi has observed as already used. Pi
also selects the set depsT of dependencies, namely all transactions T ′ conflicting
with T and having a (even temporary) position less than posT .

Subsequently, Pi broadcasts a Propose message with the tuple 〈T , posT ,
depsT , e〉 to all nodes. By broadcasting a transaction T we mean broadcasting
T ’s identifier (T.tid), read-set (T.RS) and write-set (T.WS).

The e value is an epoch number associated with transaction T and the mes-
sages containing T . It identifies the epoch in which messages for T can be ex-
changed. A transition to a new epoch is forced by T ’s new elected leader when
T ’s old leader is suspected as crashed. Messages associated with an epoch e1
cannot be processed by nodes that have already executed a transition to an
epoch e2, with e2 > e1. In the Propose message, the epoch number is 0 since
it identifies the initial epoch of T in which T ’s sender is recognized by default
as the initial leader tlT of T .

A node Pj receiving a Propose message for T , replies with an AckPropose
message in order to update Pi with the set of transactions conflicting with T and
observed by Pj so far, i.e., newDepsjT , and a possibly new position to be chosen

for T , i.e., newPosjT . In particular, let us define tempjT as the smallest number
among the ones allowed by Rule 1 for Pi and greater than any other position used
by transactions conflicting with T and already received by Pj . Then newPosjT
is equal to tempjT in case tempjT is greater than posT (the position proposed by

Pi); otherwise it is equal to posT . On the other hand, newDepsjT is the set of all
transactions T ′ conflicting with T and having a (even temporary) position less
than newPosjT .

A transaction T received during this phase is marked as Pending and it is
inserted in a data structure named delivery queue (DQueue). On each node Pj ,
DQueue is a queue storing the transactions received by Pj as tuples 〈T , posT ,
depsT , status〉, where status has values in {Pending, Accepted, Stable}.
The tuples in the DQueue are totally ordered according to their posT ’s values.

Decision phase. Transaction T ’s leader Pi waits for a quorum of FQ replies
from the previous phase. It then computes the final position posT and final
dependencies depsT that are used for the delivery of T in the next phases as
follows: posT is the maximum position among the proposals (newPosjT ) in the

quorum, while depsT is the union among the dependency sets (newDepsjT ) pro-
posed in the quorum. Afterwards, Pi broadcasts an Accept message for T with
the final position and dependencies in order to request to other nodes to accept
the delivery of T . The value of FQ in the base configuration of POB is equal to



f + 1. Section 4.1 shows how to enable a so called fast transaction decision by
changing the value of FQ.

Accept phase. A node Pj receiving T updates its DQueue accordingly. This
means changing the status of T to Accepted and replacing the old values of
posT and depsT with the ones received in this phase. Then Pj replies with an
AckAccept message by including posT and a possibly new set of dependencies
newDepsjT . In fact, in this phase Pj can also attach an additional set deltadepsT
to depsT , if it detects that it received transactions T δ conflicting with T and
having a position in between the old and the new values of posT in DQueue.
This is because, Pj could have been received T δ after that depsT was computed

in the Proposal phase. More formally, newDepsjT is equal to depsT ∪deltadepsT ,
where deltadepsT is the set of all transactions T ′ 6∈ depsT conflicting with T and
having a (even temporary) position less than posT .

Delivery phase. T ’s leader Pi waits for a quorum of CQ replies from the
previous phase, where CQ is equal to f + 1, to be sure that its decision will
be stable even if f failures (including itself) occur. After that, it broadcasts its
decision via a Stable message including posT , which was already decided in the
Decision phase, and depsT , which is computed as the union of the newDepsjT
collected during the previous phase.

A node receiving the Stable message for T marks T as Stable in its DQueue
by also replacing the old values of posT and depsT with the ones received in this
phase. Then, the node can deliver the message [T, depsT ] to the concurrency
control when all transactions in depsT have been already delivered by triggering
PODeliver(T, depsT ).

Since the position of a transaction T ′ can change throughout the execution of
the POB protocol, there might be scenarios in which a transaction T ′′ ∈ depsT ′

becomes Stable with a position posT ′′ greater than the final position of T ′,
which would lead T ′ to wait infinitely for a conflicting transaction that is actually
ordered after it. To address this problem, in such a case T ′′ is removed from the
depsT ′ set. Note that, when this condition is true, T ′ is guaranteed to be already
present in depsT ′′ .

Failure Recovery. When a node Pk detects that T ’s current leader Pi crashed,
and Pk has not yet marked T as Stable, it attempts to become T ’s new leader by
executing a classic Paxos Prepare phase [14]. Therefore, Pk broadcasts an epoch
number e for T greater than the last one observed for T . Then it waits for a
Promise from a quorum Q of f+1 nodes, meaning that they will not participate
in any new Prepare phase or Proposal/Accept phases for T associated with an
epoch number less than e. The nodes in Q also send back the latest status known
for T and identified by the most recent tuple 〈T , posT , depsT , status〉 they have
in their DQueue. This allows Pk to take a final decision that cannot differ from
the one Pi took (if any).

Therefore, we distinguish three cases depending on the value of status:

- At least one 〈T , posT , depsT , Stable〉 is received from Q. In this case, Pk
starts a Delivery phase by broadcasting a Stable message for T with posT
and depsT .



- At least one 〈T , posT , depsT , Accepted〉 is received from Q and no Stable
status is present. In this case, Pk starts an Accept phase by broadcasting an
Accept message for T with posT and depsT .

- Neither Accepted nor Stable value is received from Q. In this case, Pk
selects a new position available for T by restarting a new instance of the
protocol starting from the Proposal phase for T .

Fast Transaction Decision. POB can be configured to allow a so called fast
transaction decision about the order of a transaction if there are no concurrent
conflicting transactions. The idea is the same as adopted in [15, 17] and entails
that a transaction leader can determine the final position of a transaction early,
i.e., after only two communication steps, because it has received all equal Ack-
Propose messages from a quorum of nodes in the Decision phase. Enabling the
fast decision introduces a trade-off. On the one hand, the leader can define the
order of a transaction in fewer communication delays, but on the other hand,
quorum sizes become bigger and the recovery phase more complex.

When fast decisions are enabled, POB must use a size FQ greater than CQ,
i.e., fast quorums bigger than classic quorums, otherwise a fast ordering decision
by a transaction leader Pi could be irrecoverable after the fault of Pi. Specifically,
the new leader of a transaction T , e.g., Pk, has to decide in the same way the
old leader of T , e.g., Pi, decided.

First of all, we have to notice that in case Pi had a fast decision for T by
including (respectively not including) a concurrent and conflicting transaction
T ′ in its dependencies, it would be impossible that the leader of T ′ also had
a fast decision by including (respectively not including) T in its dependencies,
due to the definition of quorums. Therefore, a trivial recovery of Pk would be
contacting the leader of T ′ to know the final decision for T ′ with respect to T .
On the contrary, in case the new leader of T , i.e., Pk, is not able to contact the
current leaders of the transactions conflicting with and concurrent to T , it must
take a decision by analyzing collected replies.

If Pi had a fast decision for T , i.e., it collected all equal proposals for T
hence it decided in two communication steps, we have to enforce a deterministic
behavior on the quorum of replies collected by Pk during recovery. Specifically,

in that case, we want Pk to have a majority (i.e.,
⌊
CQ
2

⌋
+1) of values equal to the

fast decision in the quorum of replies collected during recovery. In other words,
when the new leader of T collects a classic quorum in the recovery phase, then
the number of replies different from a possible fast decision of the old leader (and
that do not include the reply from the leader of a generic conflicting transaction),

i.e., N −FQ− 1, has to be less than the majority in the quorum, i.e.,
⌊
CQ
2

⌋
+ 1.

Equation 1 follows.

In addition to the above, another constraint is needed to avoid two new
leaders of two conflicting and concurrent transactions T and T ′, here called
opponents, both believing that the associated old leaders of T and T ′ respectively
had fast decisions. So after f failures and ignoring the reply from the other



opponent, i.e., −1, two opponents cannot both collect a sufficient number of
replies, i.e., N−f

2 , that summed up f form a fast quorum. Equation 2 follows.

N − FQ− 1 <

⌊
CQ

2

⌋
+ 1 (1)

N − f
2

+ f − 1 < FQ (2)

If we minimize the ratio N
f by still considering f <

⌈
N
2

⌉
, e.g., N = 2f + 1,

we obtain the following sizes for the classic and fast quorums, respectively:

CQ = f + 1 (3) FQ = f +

⌊
f + 1

2

⌋
(4)

Note that CQ and FQ in Equations 3 and 4 have the same values adopted
by EPaxos. The new recovery phase that applies under this optimization is a
trivial extension of the recovery procedure as presented in EPaxos.

By using these new values for CQ and FQ, the fast transaction decision works
as follows. After having collected FQ AckPropose in the Proposal phase for
transaction T , T ’s leader can directly send the final decision via the Stable
message if all the collected proposals are the same. Otherwise it proceeds in the
classic way by entering the Accept phase.

4.2 Parallel Concurrency Control Layer

Each node in the system is equipped with a Parallel Concurrency Control layer
(P-CC) that is responsible for executing transactions submitted by clients as
well as processing the commit of transactions delivered by POB.

We can split P-CC’s operations into two parts. The first part, the execu-
tion phase, is responsible for executing transactions optimistically. Following the
classic multi-version concurrency control scheme implemented in state-of-the-art
in-memory transactional systems [4], a transaction executes its read operations
on the snapshot of memory present at the time of its beginning (i.e., which in-
cludes the set of commits applied before the transaction began), while its writes
are buffered and can be applied atomically on all nodes only if the transaction
can commit. At this stage, the transaction’s read-set and write-set are also built.

The second part, the commit phase, is responsible for validating and com-
mitting the optimistic execution of transactions on all nodes. This is done by
sending the commit message of a transaction T with T ’s read-set and write-set
via the POB layer, and triggering the validation of T as soon as T is delivered
by POB. A sufficient condition to guarantee that T appears as executed atomi-
cally on all nodes is to validate it by checking that no value read by T has been
updated in between its beginning and its finalization.

The P-CC layer guarantees that i) every transaction, including aborted ones,
observes a consistent state, and ii) the set of committed transactions satisfies
Serializability (SR). Even if SR is one of the reference consistency criteria for
transactional systems, it might be considered not necessary for several types of
applications [20]. Such applications stand to benefit from requiring: i) that the



transactional state never performs a transition to an incorrect state, and ii) that
all operations always observe consistent states. While the former requires that
only update transactions appear as executed sequentially (as demanded by SR),
the latter allows to implement read-only transactions with lower guarantees.

In order to take advantage of the above considerations, Alvin supports an-
other strongly consistent criterion, besides SR, named Extended Update Serial-
izability (EUS) [1], which can be considered as strong as Serializability for many
common workloads [20, 6]. Roughly speaking, EUS preserves Serializability of
committed update transactions and disallows any transaction to observe incor-
rect states. However, with EUS, two read-only transactions might observe two
different non-compatible histories of commits, caused by a different perceived
commit order of non-conflicting update transactions. EUS gives the necessary
flexibility to Alvin for committing two update non-conflicting transactions Th
and Tk in an arbitrary order thanks to the POB layer, such that Th completes
before Tk on a node Pi, and vice-versa on another node Pj . At that point, trans-
actions Tq and Tw that are executing on nodes Pi and Pj respectively, are allowed
to observe two different serializations of Th and Tk without providing any incon-
sistent view to the application. Then, in case Tq and Tw are read-only, they are
also allowed to commit under EUS.

Therefore, in order to allow behaviors like the one described above, and to
support EUS, P-CC can be configured to avoid the global certification of read-
only transactions through POB at commit time, so that a read-only transaction
can safely commit as soon as it has been processed locally. In fact, as described
in [21], certification-less read-only transactions disallow Serializabiliy in case a
total order on the commit of update transactions is not enforced.

Summarizing, since POB ensures a total order among commits of conflicting
(both read-only and update) transactions and P-CC ensures that the read-set
of committed transactions is not invalidated by concurrent transactions, then
Alvin enforces SR [21]. Moreover, P-CC guarantees that all read operations re-
turn the last value committed before the beginning of the transaction execution.
This way, any transaction can never observe inconsistent states. Therefore, if
read-only transactions are only processed locally without being submitted for a
global certification, Alvin guarantees SR restricted to committed update trans-
actions, as demanded by EUS.

5 Evaluation

We evaluate Alvin by comparing it against two certification-based transaction
execution protocols [18] that rely on MultiPaxos [14] and EPaxos [17] for their
ordering layer. MultiPaxos ensures serializability by total-ordering the commit
requests for all write transactions, while serving read-only transactions locally
leveraging multi-versioning. However, MultiPaxos is sequencer-based, thus the
location of the node designated as the leader significantly affects its performance.
In order to conduct a fair comparison, we used two versions of MultiPaxos: one
with the leader located at a node with a point-to-point latency to other nodes



(a) Write-intensive workload for {3,5,7} sites and
{1,3} nodes per site.

(b) 50% and 90% read-only transactions. One node
per site.

Fig. 1. Throughput of TPC-C benchmark.

that is higher than the average (Paxos-HI ), and another where the connection
latency is lower (Paxos-LO). We implemented Alvin and competitors in the
same transaction processing framework, using Go as the programming language.

We used two benchmarks in the evaluation: TPC-C [6] and Bank [11]. The
former is a well known benchmark representative of on-line transaction process-
ing workloads; the latter mimics operations of a monetary application where
each transaction transfer amount of money among bank accounts. We ran our
experiments on the Amazon EC2 infrastructure, using r3.2xlarge nodes in up
to 7 geographically distributed sites (three in Asia, two in North America, one
in South America and Europe). Each node has 8 CPU cores and 61GB RAM.
Results are the average of 7 samples.

Figure 1 reports Alvin’s throughput of TPC-C benchmarks by varying the
number of geographically distributed sites {3,5,7}. In Figure 1(a) we also changed
the number of nodes per site as {1,3}, using a write intensive workload (<3%
read-only). Results on read-dominated workloads are showed in Figure 1(b).
Here we change the percentage of read-only transactions from 50% to 90% while
using one node per datacenter. In this read dominated scenario we explore both
versions of Alvin, ensuring SR (Alvin-SR) and EUS (Alvin-EUS), with the
purpose of assessing the effectiveness of EUS. In all depicted scenarios, we con-
figured Alvin to run with fast decisions enabled. We batch messages for all
competitors, using a window of 20 to 50 msec, according to the nodes deployed.

TPC-C’s transactions access several shared objects and have a non-negligible
computation. This results in long transaction execution time and a complex de-
pendency graph to be analyzed during the processing of commit requests in
EPaxos. Rather, Alvin is able to improve the parallelism thanks to the different
delivery rules of POB, gaining up to 26% in throughput against EPaxos. Both
EPaxos and Alvin sustain their throughput while increasing the system’s load
until 9 nodes (3 datacenters with 3 nodes each), then the system becomes over-
loaded and performance degrades due to increasing contention. MultiPaxos in
both its configurations performs worse than others due to the presence of single
remote leader that slows down the entire system’s progress. In addition, here
transactions are long thus the sequential certification limits its performance.



Figure 1(b) shows the effectiveness of exploiting EUS in read-dominated
workloads by avoiding to broadcast read-only transactions via the ordering layer.
Therefore Alvin-EUS provides a speed up of up to 4.8× in throughput when
compared to Alvin-SR and EPaxos. It is important to notice that in these
scenarios, MultiPaxos is also able to take advantage of local computation of
read-only transactions. In fact, its Paxos-LO configuration performs similar to
EPaxos and Alvin-SR for the case of 90% of read-only transactions and 3 dat-
acenters. In other scenarios, Paxos-LO saturates its leader’s resources, slowing
down the ordering process. As before, Paxos-HI exposes poor performance due
to the high communication latency with the faraway designated leader. Regard-
ing the comparison between EPaxos and Alvin-SR, they follow about the same
trend observed in Figure 1(a) because they both process read-only transactions
in the same way.

85#threads#

125#threads#

(a) Alvin Vs EPaxos on 5 sites.

200 400 600 800 1000 1200 1400
Throughput (tps)

340

350

360

370

380

390

400

410

420

La
te

n
cy

 (
m

s)

ALVIN-F

ALVIN-NF

(b) Impact of fast decision.

Fig. 2. Throughput Vs Latency using TPC-C benchmark varying application threads.

In Figure 2(a) we plot the latency increasing the system’s load by adding
application threads per node from 15 to 125. Here, we used 5 sites and TPC-C
as the benchmark, adopting the same workload as in Figure 1(a). For increasing
the readability of the plot we excluded MultiPaxos because its results were 3×
slower than the other competitors. From the analysis of EPaxos’s and Alvin’s
trends we observe that Alvin has a lower transaction latency and it sustains its
throughput better than EPaxos. Specifically, with 85 threads per site EPaxos
stops scaling while Alvin is still able to serve more requests. Alvin reaches its
saturation point running 125 threads per site.

With the plot in Figure 2(b) we highlight the importance of configuring
Alvin without the fast decision in high contention scenarios. In these situations,
the probability of taking a fast decision after having collected a fast quorum of
replies is low. Therefore the POB layer always pays the maximum number of
communication steps to reach a decision by contacting a fast quorum of nodes
in the Proposal phase and then falling back to the Accept phase. Disabling the
fast decision forces the leader to always collect replies from a classic quorum.
We configured TPC-C as in Figure 1(a) with 7 sites and one node each, and we
increased the load as before. Alvin-NF (fast decisions disabled) improves the
latency of Alvin-F (fast decisions enabled) up to 30 msec, confirming that, in
some scenarios, waiting for an unlikely fast decision does not pay off.



Fig. 3. Throughput under write-intensive workload for {3,5,7} sites and {1,3} nodes
per site using Bank benchmark.

The Bank benchmark has very small transactions (only few operations) and
the amount of transactional work can be considered as negligible when compared
to the coordination steps required for establishing the agreement on the global
ordering. This makes the results of both Alvin and EPaxos comparable in almost
all configurations tested as we showed in Figure 3. Bank’s accesses are uniformly
distributed across all objects and we managed the total number of shared objects
for having an average transaction’s abort rate in the range of 10-20%.

EPaxos’s dependency graph analysis does not slow down the transaction’s
critical path significantly because the strongly connected components with more
than one node are only 1.7% of all, thus the main impacting factor on the perfor-
mance is the number of communication delays used for delivering transactions
and, with fast decisions enabled, both Alvin and EPaxos use the same commu-
nication delays for delivering. However, it is worth noticing that all competitors
relying on partial order instead of total order sustain their throughput when we
increase the number of nodes until 7 datacenters, where they start degrading.
MultiPaxos in both its configurations performs worse than others due to the
presence of single remote leader that slows down the entire system’s progress.
The exception is Paxos-LO, which is the closest to others because it benefits
from having a low latency leader when site count is limited.

6 Conclusion

At its core, the design of Alvin shows that it is possible to achieve an effective
tradeoff between performance and programmability in geo-replicated environ-
ments. An important insight of our work is that partial ordering of transactions
can be significantly exploited to speed up local concurrency control through par-
allelism and that it can be determined without a unique leader, which increases
scalability in a geo-replicated setting.

Acknowledgments

This work is supported in part by US National Science Foundation under grant
CNS-1217385.



References

1. Adya, A.: Weak Consistency: A Generalized Theory and Optimistic Implementa-
tions for Distributed Transactions. PhD thesis AAI0800775. MIT (1999)

2. Almeida, S., Leitão, J., Rodrigues, L.: ChainReaction: A Causal+ Consistent Data-
store Based on Chain Replication. In: 8th ACM EuroSys, pp. 85–98. ACM (2013)

3. Bernstein, P. A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley (1987)

4. Cachopo, J., Rito-Silva, A.: Versioned Boxes As the Basis for Memory Transactions.
Sci. Comput. Program. 63(2), 172–185 (2006)

5. Corbett J. C. et al.: Spanner: Google’s Globally Distributed Database. ACM Trans.
Comput. Syst. 31(3), 8:1–8:22 (2013)

6. TPC-C Benchmark, http://www.tpc.org/tpcc/
7. Défago, X., Schiper, A., Urbán, P.: Total Order Broadcast and Multicast Algorithms:

Taxonomy and Survey. ACM Comput. Surv. 36(4), 372–421 (2004)
8. Guerraoui, R., Kapalka, M.: On the Correctness of Transactional Memory. In: 13th

ACM SIGPLAN PPoPP, pp. 175–184. ACM (2008)
9. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming.

Springer (2006)
10. Guerraoui, R., Schiper, A.: Genuine Atomic Multicast in Asynchronous Distributed

Systems. Theor. Comput. Sci. 254, 297–316 (2001)
11. Hirve, S., Palmieri, R., Ravindran, B.: Archie: A Speculative Replicated Transac-

tional System. In: 15th ACM/IFIP/USENIX Middleware. ACM (2014)
12. Kraska, T., Pang, G., Franklin, M. J., Madden, S., Fekete, A.: MDCC: Multi-data

Center Consistency. In: 8th ACM EuroSys, pp. 113–126. ACM (2013)
13. Lamport, L.: Generalized Consensus and Paxos. Technical report MSR-TR-2005-

33, Microsoft Research (2005)
14. Lamport, L.: The Part-time Parliament. ACM Trans. Comput. Syst. 16(2), 133–

169 (1998)
15. Lamport, L.: Fast Paxos. Distributed Computing 19(2), 79–103 (2006)
16. Mao, Y., Junqueira, F. P., Marzullo, K.: Mencius: Building Efficient Replicated

State Machines for WANs. In: 8th USENIX OSDI, pp. 369–384. USENIX (2008)
17. Moraru, I., Andersen, D. G., Kaminsky, M.: There is More Consensus in Egalitarian

Parliaments. In: 24th ACM SOSP, pp. 358–372. ACM (2013)
18. Pedone, F., Guerraoui, R., Schiper, A.: The Database State Machine Approach.

Distrib. Parallel Databases 14(1), 71–98 (2003)
19. Pedone, F., Schiper, A.: Generic Broadcast. In: 13th DISC, pp. 94–108. Springer-

Verlag (1999)
20. Peluso, S., Ruivo, P., Romano, P., Quaglia, F., Rodrigues, L.: When Scalability

Meets Consistency: Genuine Multiversion Update-Serializable Partial Data Repli-
cation. In: 32nd ICDCS, pp. 455–465. IEEE Computer Society (2012)

21. Schmidt, R., Pedone, F.: A Formal Analysis of the Deferred Update Technique. In:
11th OPODIS, pp. 16–30. Springer-Verlag (2007)

22. Sovran, Y., Power, R., Aguilera, M. K., Li, J.: Transactional Storage for Geo-
replicated Systems. In: 23rd ACM SOSP, pp. 385–400. ACM (2011)

23. Zhang, Y., Power, R., Zhou, S., Sovran, Y., Aguilera, M. K., Li, J.: Transaction
Chains: Achieving Serializability with Low Latency in Geo-distributed Storage Sys-
tems. In: 24th ACM SOSP, pp. 276–291. ACM (2013)


