
HaTS: Hardware-assisted Transaction Scheduler1

Zhanhao Chen2

Palo Alto Networks Inc, USA3

zhachen@paloaltonetworks.com4

Ahmed Hassan5

Lehigh University, USA6

ahmed.hassan@lehigh.edu7

Masoomeh Javidi Kishi8

Lehigh University, USA9

maj717@lehigh.edu10

Jacob Nelson11

Lehigh University, USA12

jjn217@lehigh.edu13

Roberto Palmieri14

Lehigh University, USA15

palmieri@lehigh.edu16

Abstract17

In this paper we present HaTS, a Hardware-assisted Transaction Scheduler. HaTS improves18

performance of concurrent applications by classifying the executions of their atomic blocks (or19

in-memory transactions) into scheduling queues, according to their so called conflict indicators. The20

goal is to group those transactions that are conflicting while letting non-conflicting transactions21

proceed in parallel. Two core innovations characterize HaTS. First, HaTS does not assume the22

availability of precise information associated with incoming transactions in order to proceed with23

the classification. It relaxes this assumption by exploiting the inherent conflict resolution provided24

by Hardware Transactional Memory (HTM). Second, HaTS dynamically adjusts the number of the25

scheduling queues in order to capture the actual application contention level. Performance results26

using the STAMP benchmark suite show up to 2x improvement over state-of-the-art HTM-based27

scheduling techniques.28

2012 ACM Subject Classification Software and its engineering → Scheduling29

Keywords and phrases Transactions, Scheduling, Hardware Transactional Memory30

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.3131

Funding This material is based upon work supported by the Air Force Office of Scientific Research32

under award number FA9550-17-1-0367 and by the National Science Foundation under Grant No.33

CNS-1814974.34

1 Introduction35

Without reservation, in-memory transactions have experienced a significant growth in ad-36

option during the last decade. Specifically, the advent of Hardware Transactional Memory37

(HTM) support in commodity processors [27, 7, 16, 30] has changed the way concurrent38

programs’ execution is handled, especially in terms of performance advantages. Whether39

a multi-threaded application implements atomic blocks using locks or transactions, HTM40

can be exploited in both cases (e.g., using Hardware Lock Elision [26] in the former case or41

Restricted Transactional Memory [27] in the latter case) to accelerate its performance.42

Hardware transactions are significantly faster than their software counterpart because43

they rely on the hardware cache-coherence protocol to detect conflicts, while Software44

© Zhanhao Chen and Ahmed Hassan and Masoomeh Javidi Kishi and Jacob Nelson and Roberto
Palmieri;
licensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhachen@paloaltonetworks.com
mailto:ahmed.hassan@lehigh.edu
mailto:maj717@lehigh.edu
mailto:jjn217@lehigh.edu
mailto:palmieri@lehigh.edu
https://doi.org/10.4230/LIPIcs.OPODIS.2019.31
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 HaTS: Hardware-assisted Transaction Scheduler

Transactional Memory (STM) [18] adds a significant overhead of instrumenting shared45

memory operations to accomplish the same goal [9]. Relying on the cache-coherence protocol46

also makes HTM appealing for mainstream adoption since it requires minimal changes in47

hardware. However, this inherent characteristic of HTM represents an obstacle towards48

defining contention management and scheduling policies for concurrent transactions, which49

are crucial for both progress and fairness of HTM execution in the presence of conflicting50

workloads. In fact, most TM implementations achieve high concurrency when the actual51

contention level is low (i.e., few transactions conflict with each other). At higher contention52

levels, without efficient scheduling, transactions abort each other more frequently, possibly53

with a domino effect that can easily lead to performance similar to, if not worse than,54

sequential execution [22, 21, 8].55

A Contention Manager (CM) is the traditional, often encounter-time technique that56

helps in managing concurrency. When a transaction conflicts with another one, the CM is57

consulted to decide which of the two transactions can proceed. A CM collects statistics about58

each transaction (e.g., start time, read/write-sets, number of retries, user-defined parameters)59

and decides priorities among conflicting transactions according to the implemented policy.60

Schedulers are similar to CMs except that they may proactively defer the execution of some61

transactions to prevent conflicts rather than react to them. In both cases, performance is62

improved by decreasing abort rate and fairness is achieved by selecting the proper transaction63

to abort/defer [20, 31, 30].64

The conflict resolution strategy of current off-the-shelf HTM implementations is provided65

entirely in hardware, and can be roughly summarized as follows:66

- the L1 cache of each CPU-core is used as a buffer for transactional read and write67

operations1;68

- the granularity of conflict detection is the cache line; and69

- if a cache line is evicted or invalidated, the transaction is aborted (reproducing the idea70

of read-set and write-set invalidation of STM [11]).71

The above strategy thus implies a requester-wins contention management policy [6], which72

informally means that a transaction T1 aborts another transaction T2 if T2 performed an73

operation on a memory location that is physically stored in the same cache line currently74

requested by T1, excluding the case of two read operations, which never abort each other.75

Due to this simple policy, classical CM policies cannot be trivially ported for scheduling HTM76

transaction mainly because of two reasons. First, transactions are immediately aborted when77

one of the cache lines in their footprint is invalidated, which makes it too late for CM to avoid78

conflicts or manage them differently (e.g., by deciding which transaction is more convenient79

to abort). Second, it is hard to embed additional metadata to monitor transactions behavior,80

since all reads and writes executed within the boundaries of transactions are considered81

transactional, even if the accessed locations store metadata rather than actual data.82

In this paper we introduce HaTS (Hardware-assisted Transaction Scheduler), a transaction83

scheduler that leverages the unique characteristics of HTM to accelerate scheduling in-memory84

transactions. To overcome the aforementioned limitations of HTM, HaTS neither aims at85

altering HTM’s conflict resolution policy nor adds metadata instrumentation inside hardware86

transactions, but instead relies on it to relax the need for the scheduler to define a non-87

conflicting schedule. HaTS effectively arranges incoming transactions according to a set88

of metadata collected either at compilation time (leveraging developer’s annotations) or89

at run time (after transactions commit/abort). HTM is then used to execute transactions90

1 In some HTM implementation [27], reads can be logged on the L2 cache to increase capacity.

Z. Chen and A. Hassan and M. J. Kishi and J. Nelson and R. Palmieri 31:3

concurrently while maintaining atomicity, isolation, and performance.91

In a nutshell, HaTS works as follows. It uses a software classifier to queue incoming92

transactions with the goal of allowing only those transactions that do not conflict with93

each other to execute concurrently. The fundamental innovation of HaTS, which makes it94

practical, is that it works with incomplete or even erroneous information associated with95

incoming transactions. This is because even if the classifier erroneously allows conflicting96

transactions to run concurrently, HTM will inherently prevent them from committing (at97

least one of the conflicting transactions will abort). Therefore, misclassifications cannot98

impact the correctness of the transactional execution.99

More in detail, HaTS offers a set of scheduling queues to group conflicting transactions.100

Membership of a queue is determined based on a single metadata object associated with101

each transaction, called conflict indicator. A conflict indicator might be provided by the102

programmer (e.g., the address of a contended memory location accessed transactionally) or103

computed by the system (e.g., transaction abort rate).104

A queued transaction waits until the scheduler signals it when it becomes top-standing in105

its respective queue. When the transaction actually executes, the built-in HTM takes care of106

possible conflicts with transactions dispatched from other queues due to misclassification,107

which also includes the case where no conflict indicator is provided.108

Another key feature of HaTS is that it adapts the number of scheduling queues based on109

a set of global statistics, such as the overall number of commits and aborts. This adaptation110

significantly improves performance in two common, and apparently dual cases. On the one111

hand, since conflict indicators are mainly best effort indicators, a single per transactions112

conflict indicator will not suffice when the application workload is highly conflicting. For113

this reason, HaTS reduces the number of queues when the overall conflict level increases,114

enforcing transactions with different conflict indicators to be executed sequentially. On the115

other hand, if the overall conflict level significantly decreases, HaTS increases the number116

of queues in order to (re-)allow transactions with different conflict indicators to execute117

concurrently. Additionally, when conflict level remains low, it enables dispatching multiple118

transactions from the same queue simultaneously, allowing transactions with the same conflict119

indicator to execute in parallel. Our framework aims at adaptively converging on an effective120

configuration of scheduling queues for the actual application workload. By leveraging HTM121

and its built-in atomicity guarantees, transitions between different configurations do not122

entail stalling transaction executions.123

We implemented HaTS in C++ and integrated it into the software framework of SEER [13].124

We contrasted HaTS performance against Hardware Lock Elision (HLE) [26], Restricted125

Transactional Memory (RTM) [27], Software-assisted Conflict Management (SCM) [1], and126

SEER itself. We used the STAMP suite as our benchmark and we used a testbed of four-127

socket Intel platform with HTM implemented through TSX-NI. Results, including speedup128

over the sequential non-instrumented code and two abort rate metrics, show that HaTS129

outperforms competitors in both high contention and low contention scenarios. This stems130

from both leveraging conflict indicators and performing dynamic adjustment of scheduling131

queues, which leads to a notable performance improvement (e.g., 2x speedup in execution132

time for Kmeans and a 50% improvement for the Vacation benchmarks).133

The rest of this paper is structured as follows. We review previous work in Section 2134

and the limitations of the current HTM implementations in Section 3. The design and135

implementation details of HaTS are presented in Section 4. We compare the performance of136

HaTS against state-of-art competitors in Section 5, and we conclude our paper in Section 6.137

OPODIS 2019

31:4 HaTS: Hardware-assisted Transaction Scheduler

2 Related Work138

TM schedulers can be classified based on whether they target STM systems [28, 15, 14, 5] or139

HTM systems [13, 25, 1, 4, 29, 31]. Although we deploy and test HaTS in an HTM-based140

environment, due to its performance advantages, HaTS can be deployed in STM systems as141

well.142

Among the HTM-based schedulers, the closest one to HaTS is SEER [13]. SEER’s main143

idea is to infer the probability that two atomic blocks conflict, basing its observation on the144

commit/abort pattern witnessed in the past while the two were scheduled concurrently. Thus,145

HaTS and SEER are similar in their best-effort nature: both of them do not require precise146

information on the pair of conflicting transactions nor on the memory location(s) where they147

conflict, which is the key to coping with the limitations of current HTM implementations.148

HaTS differs from SEER in two core points. First, SEER focuses only on managing149

HTM limitations, and thus it schedules transactions based on their commit/abort patterns.150

On the other hand, HaTS is a generic scheduler that uses HTM to preserve atomicity and151

consistency, and thus it defines a generic conflict indicator object that can embed both152

online and offline metadata. Second, SEER adopts a fine-grained (pairwise) locking approach153

to prevent transactions that are more likely to conflict from running concurrently. HaTS154

replaces this fine-grained locking scheme with a lightweight queueing scheme that controls the155

level of conflict by increasing/decreasing the number of scheduling queues. Our experimental156

results in Section 5 show that this lightweight scheme results in a lower overhead in different157

scenarios, as the case of Vacation where the percentage of committed transactions in HTM158

is comparable with SEER’s but overall application execution time is about 50% faster.159

The work in [1] proposes a Software-assisted Conflict Management (SCM) extension to160

HTM-based lock elision (HLE) [26], where aborted transactions are serialized (using an161

auxiliary lock) and retried in HTM instead of falling back to a slow path with a single global162

lock. The main advantage of this approach is avoiding the lemming effect that causes new163

(non-conflicting) transactions to fall back to the slow path as well. As opposed to HaTS,164

SCM uses a conservative scheme where all aborted transactions are serialized without any165

further (even imprecise) conflict indicators, which limits concurrency. Moreover, SCM does166

not leverage the observed conflict pattern to proactively prevent conflicts in the future.167

The idea of using scheduling queues to group conflicting transactions has been briefly168

discussed in [25], where authors introduced the concept of Octonauts. Octonauts uses169

statistics from transactions that committed in HTM to speculate over the characteristics of170

the associated transaction profile for future classification. HaTS is an evolution of Octonauts171

where a comprehensive software infrastructure, along with conflict indicators and a dynamic172

scheduling queuing techniques have been used to improve application performance.173

A few other HTM-based schedulers were proposed prior to the release of Intel TSX174

extensions [27]. However, they either assume HTM implementations that are different from175

the currently deployed hardware [4, 29] or rely on a conservative single-lock-based serialization176

scheme similar to SCM [31].177

STM-based schedulers rely on more precise information about transactions conflict.178

ProPS [28] uses a probabilistic approach similar to SEER but with a precise knowledge of179

the pair of conflicting transactions. Shrink [15] additionally uses the history of recently180

completed transactions’ read/write-sets to predict conflicts. CAR-STM [14] and SOA [5] use181

per-core queues such that an aborted transaction is placed in the queue of the transaction182

that causes it to abort. The necessity of precise information represents an obstacle towards183

adopting such techniques in HTM-based systems.184

Z. Chen and A. Hassan and M. J. Kishi and J. Nelson and R. Palmieri 31:5

3 Background: Scheduling Best-effort Hardware Transactions185

HTM provides a convenient concurrent programming abstraction because it guarantees safe186

and efficient accesses to shared memory. HTM executes atomic blocks of code optimistically,187

and during the execution all read and write operations to shared memory are recorded in188

a per-transaction log, which is maintained in a thread-local cache. Any two operations189

generated by two concurrent transactions accessing memory mapped to the same cache190

line trigger the abort of one of the transactions. HTM is known to have limited progress191

guarantees [3, 8, 24]. To guarantee progress, all HTM transactions are guaranteed to commit192

after a number of retries as HTM transactions by exploiting the traditional software lock-193

based fallback path [27]. To implement that, hardware transactions check if the fallback194

lock is acquired at the beginning of their execution. If so, the transactional execution is195

retried; otherwise the execution proceeds in hardware and mutual exclusion with the fallback196

path is implemented by leveraging the strong atomicity property of HTM, which aborts any197

hardware execution if the fallback lock is acquired at any moment. To reduce the well-known198

lemming effect [10] in HaTS, a transaction is not retried in HTM until the global lock is199

released.200

For simplicity, in the rest of the paper we refer to HTM execution as the above process,201

which encompasses hardware trials followed by the fallback path, if needed. It is important202

to note that, since HaTS does not assume a specific methodology to provide HTM with203

progress, more optimized alternative solutions [22, 8, 12] can be integrated into our HTM204

execution to improve performance even further.205

The off-the-shelf HTM implementation only provides limited information about reasons206

behind aborted transactions, which makes it very hard for programmer to introduce modi-207

fications that would increase the likelihood for that transaction to commit. As a result, in208

the presence of applications with contention, HTM might waste many CPU cycles until a209

transaction can succeed by either retrying multiple times, or by falling back to a single global210

lock where the protected HTM execution can be relaxed in favor of the mutual exclusion211

implemented by the lock itself.212

Contention management for practical transaction processing systems is often formulated213

as an online problem where metadata, in the form of statistics (e.g., actual access pattern),214

can be collected by aborted and committed transactions in order to fine-tune scheduling215

activities. However, this methodology cannot be directly ported to HTM-protected concurrent216

executions since HTM cannot distinguish between a cache line that stores actual application217

data, or scheduling metadata. Because of that, conflicting accesses to shared metadata218

executed by two concurrent hardware transactions may cause at least one of them to abort,219

even if at the semantic level no conflict occurred.220

The above issues motivated us to design a transaction scheduler where HTM is exploited221

as-is, instead of providing software innovations or hardware extensions aimed at influencing the222

HTM conflict resolution mechanism [2], which likely lead to degradation of HTM effectiveness.223

4 Hardware Transaction Scheduler224

In this section we overview the two core components of HaTS, namely the transaction225

conflict indicator (Section 4.1) and the dynamic scheduling queues (Section 4.2), along with226

a description of the complete transaction execution flow (Section 4.3) and the details of how227

threads execution passes through the scheduling queues (Section 4.4).228

Terminology. HaTS has a set of N concurrent queues, called scheduling queues. Each229

thread that is about to start a transaction (i.e., an atomic block) is mapped to one of230

OPODIS 2019

31:6 HaTS: Hardware-assisted Transaction Scheduler

those scheduling queues, and it starts executing only when HaTS dispatches it from that231

queue. Each scheduling queue has one (or more) dispatcher thread(s). As we detail later,232

the mapping between each transaction and its corresponding scheduling queue is based on233

the transaction’s conflict indicator and the mapping is implemented using hashing. The234

overall transaction commit/abort statistics are collected by HaTS and recorded into a shared235

knowledge base. HaTS periodically consults the knowledge base to increase/decrease the236

number of scheduling queues or the number of dispatcher threads, dynamically.237

4.1 Transaction Conflict Indicator238

HaTS uses a so called transaction conflict indicator, provided as a parameter to TM-BEGIN239

in our experimental study, to represent in a compact way characteristics that affect the240

probability of aborting a hardware transaction due to conflict. Having this information is241

indeed powerful because it allows HaTS to group transactions that access the same system’s242

hot spot in the same conflict queue, which saves aborts and increases throughput.243

The transaction conflict indicator is an abstraction that can be deployed in many different244

ways. A simple and effective example of conflict indicator is the address of the memory245

location associated with the accessed system hot spot. As a concrete example in a real246

application, let us consider a monetary application where transactions work on given bank247

accounts. A transaction would use the address of the accessed bank account, which uniquely248

identifies that object (or memory location) in the system, as its conflict indicator. This way,249

although transactions might still (occasionally) conflict on other shared memory elements,250

HaTS will be able to prevent conflicts between accesses to the same bank account, which is251

one of the most contended set of objects in the system. Because of its effectiveness, in our252

evaluation study we focused on system hot spots as the transaction conflict indicator.253

Other examples of transaction conflict indicators include:254

- Abstract data types of accessed objects: transactions accessing (possibly different) objects255

of the same abstract data type will have the same conflict indicator. This represents a256

more conservative approach than our adopted (per-object) conflict indicator, and it can257

work better in workloads with higher contention levels.258

- HLE fallback lock(s): if hardware transactions are used for lock elision (HLE) [26], the259

fallback paths of HTM transactions acquire the elided locks rather than a single global260

lock, as in RTM. Using this fallback lock as a conflict indicator, transactions that elide261

the same lock are grouped together.262

- Profile of aborted transactions: HaTS’s knowledge base can record the profile identification263

of aborted transactions within a window of execution, and group incoming invocations of264

those transactions using a single conflict indicator. This can significantly reduce abort265

rate because those transactions are more prone to conflict in the future as well. To avoid266

unnecessary serialization, the knowledge base can record only transactions aborted due to267

conflict, and exclude transactions aborted for any other reason (i.e., capacity and explicit268

aborts).269

- Core ID: transactions running on the same physical core are assigned the same conflict270

indicator. This can be beneficial because multiple hardware threads running on the271

same physical core share the same L1 cache, which means that transactions concurrently272

invoked by those threads are more prone to exceed cache capacity and abort.273

The last two points reflect similar ideas already used in literature in different ways [13, 1,274

28, 15, 14, 5]. Although we refer to Section 2 for a detailed comparison of these approaches275

with HaTS, it is worth to mention here that HaTS’s innovations relies on the fact that it276

deploys those ideas in an abstract way, using conflict indicators, which allows for a better277

Z. Chen and A. Hassan and M. J. Kishi and J. Nelson and R. Palmieri 31:7

scheduling management.278

HaTS allows for the specification of a single conflict indicator per transaction. Although279

a single indicator might seem limited in terms of expressiveness, we adopt this approach280

because of the following reasons. First, there will always be a trade-off between the precision281

achieved by allowing multiple indicators and the additional cost needed to analyze them.282

Our decision is the consequence of an empirical study, that we excluded for space limitations,283

where we analyzed this trade-off. Second, the way HaTS adapts the number of scheduling284

queues (as detailed in the next section) is a dominant factor to manage contention that285

mitigates the effect of having imprecise, yet lightweight, conflict indicators. Finally, it is286

still possible to extend HaTS’s infrastructure to support multiple indicators. For example,287

Bloom Filters can be used to compact multiple indicators and bit-wise operations (using288

either conjunction or disjunction operators) can be used to hash each bloom filter to the289

corresponding queue. As a future work, we plan to study the trade-off mentioned above;290

however, our current evaluation shows that even with a single indicator, HaTS outperforms291

existing approaches.292

4.2 Dynamic Distribution of Scheduling Queues293

Mapping transaction conflict indicators to scheduling queues is critical for achieving the goal294

of HaTS because it guarantees that transactions with the same conflict indicators are grouped295

in the same queue. However, using a static number of scheduling queues in such a mapping296

might lead to issues such as unbalancing, unfair scheduling, and poor adaptivity to some297

application workloads. For this reason, HaTS deploys a dynamic number of scheduling queues298

to cope with application workloads and effectively provide an elastic degree of parallelism.299

As we detailed in Section 4.3, this number is decided at run time according to the overall300

commit/abort statistics calculated in HaTS’s knowledge base.301

The following two examples clarify the need for having a dynamic set of scheduling queues.302

First, consider two incoming transactions with different conflict indicators. Since we have a303

finite number of scheduling queues, it is possible that those two transactions are mapped to304

the same queue. When the number N of queues is increased, the probability of mapping305

those transactions to the same queue decreases, and the level of parallelism increases. Second,306

consider a workload where transactions are highly conflicting so that the conflict indicator is307

not sufficient to capture all raised conflicts. In this case, decreasing the number of queues308

reduces parallelism and potentially reduces abort rate.309

Adaptively changing the number of queues also covers more complex, yet not uncommon,310

cases. For example, it covers the case when transactions’ data access pattern is hard to311

predict; therefore having a single conflict indicator per transaction may not be sufficient (e.g.,312

when each transaction accesses multiple system hot spots). Also, it covers the cases when no313

effective conflict indicator can be defined but the workload experiences high abort rates due314

to other reasons (e.g., aborts due to false sharing of the same cache lines). Finally, it allows315

schedulers to temporarily disable the usage of conflicting indicator as a medium for grouping316

transactions, in favor of a random policy, without hindering performance.317

As will be clear in Section 4.3, dynamically changing the number of scheduling queues318

neither introduces blocking phases nor trades off correctness, thanks to the underlying HTM.319

4.2.1 Multiple Dispatchers320

An interesting example that is not covered by the aforementioned policy is when transactions321

with the same conflict indicator (and hence grouped in the same queue) are actually able to322

OPODIS 2019

31:8 HaTS: Hardware-assisted Transaction Scheduler

execute concurrently. Although it may appear as an infrequent case, we recall that conflict323

indicators are best-effort indicators that can be imprecise. Also, since conflicts are raised at324

runtime according to the transaction execution pattern, it may happen that two conflicting325

concurrent transactions succeed to commit even if they run concurrently (e.g., one of them326

commits before the other one reaches the conflicting part).327

HaTS addresses this case by allowing multiple dispatcher threads for a single scheduling328

queue. Similar to the way we increase/decrease the number queues, we use abort rate329

as an indicator to increase/decrease the number of dispatchers per queue. For additional330

fine-tuning, we allow programmers to statically configure the number of scheduling queues.331

In that sense, transactions with the same conflict indicator are executed in parallel only if332

the overall contention level is low.333

4.3 Transaction Execution Flow334

Transactional operations are executed directly by application threads, without relying on335

designated worker threads managed by HaTS. In fact, HaTS’s role is to dispatch thread336

executions.337

Scheduling Queues

Figure 1 HaTS software architecture and high-level threads execution flow.

HaTS restricts transactions mapped to the same scheduling queue to run sequentially,338

while offloading the concurrency control handling to the underlying HTM engine. Figure 1339

shows the execution flow of a transaction T executed by an application thread Tr. Tr first340

hashes the conflict indicator of T (using module N hashing, where N is the current number341

of scheduling queues) in order to find the matching scheduling queue Q (Step 1). After that,342

Tr effectively suspends its execution by enqueuing itself into Q (Step 2) and waiting until a343

dispatcher thread resumes its execution (Step 3).344

HaTS provides one (or more) dispatcher thread TQ per conflict queue Q. Each dispatcher345

thread resumes one waiting transaction execution at a time, in a closed-loop manner, meaning346

the next queued transaction execution is resumed only after the previous one is successfully347

committed. For the sake of fairness, each queue is implemented as a priority queue, where348

the priority of each transaction is proportional to the number of aborts its enclosing atomic349

block experienced in former executions (similar to the approach used in SEER [13] to infer350

the conflict pattern between atomic blocks.).351

When a thread execution is resumed, the corresponding transaction starts to execute352

leveraging the HTM implementation (Step 4). During the hardware transaction execution,353

TQ waits until Tr completes its transactional execution. After Tr’s commit, TQ takes control354

Z. Chen and A. Hassan and M. J. Kishi and J. Nelson and R. Palmieri 31:9

(Step 5) and performs two operations: it updates the knowledge base with the needed355

information (namely the number and types of aborts before committing); and it dispatches356

the next thread execution waiting in Q.357

A special background thread, called updater, is used to dynamically change the number358

of scheduling queues depending upon the effectiveness of the parallelism achieved by the359

current scheduling queues configuration. To do so, the updater thread queries the knowledge360

base and decides, according to the transaction abort rate measured so far, whether the361

total number N of scheduling queues should be increased, decreased, or unchanged (Step 6).362

In our implementation, we adopt a simple hill-climbing approach similar to the one used363

in [17, 12]. Briefly, if the observed abort rate is greater (less) than the last observed rate, we364

decrease (increase) the number of queues by one. The maximum number of queues is set to365

the number of physical cores and the minimum is set to one. We also allow programmers366

to override this policy by setting a fixed number of scheduling queues in order to eliminate367

the overhead of this dynamic behavior, especially when the most effective configuration is368

known. Interestingly, as we show later in our experimental results, this simple approach pays369

off in most of the tested benchmarks. As a future work, we plan to investigate more complex370

approaches, such as collecting more detailed information (e.g., the types of aborts) an use371

reinforcement learning to reach better estimates.372

Changing the scheduling queues configuration does not cause stalls of the transaction373

execution and does not affect execution correctness. This is a great advantage of leveraging374

HTM conflict detection. Let us consider two incoming transactions T1 and T2 that in the375

current scheduling queues configuration would map to the same scheduling queue Q1. Let376

us assume that the scheduling queues configuration changes after T1 is enqueued in Q1377

and before T2 is enqueued. In this case, there is the possibility for T2 to be mapped to378

another queue Q2 in the new configuration, which ends up having T1 and T2 in two different379

queues (even though it might be the case they were both to be mapped to the same queue380

Q2 in the new configurations). Although one can consider this scenario as an example of381

misclassification of incoming transactions due to ongoing change of N , safety cannot be382

affected because of leveraging the HTM execution. Even if those transactions are conflicting,383

they will be correctly serialized by (likely) enforcing one of them to abort and fallback to384

HTM’s global locking phase.385

4.4 Suspending/Resuming Executions with Scheduling Queues386

As we mentioned in the previous section, a thread that wants to execute a transaction387

suspends and enqueues its execution until a dispatcher thread of the mapped queue resumes388

it. In order to synchronize this suspend/resume process, we use two synchronization flags2,389

one handled by the application thread and the other handled by the dispatcher thread.390

Figure 2 pictures the synchronization scheme between an application thread Tr performing391

a transaction T and a dispatcher thread TQ responsible for handling the scheduling queue Q392

that matches T ’s conflict indicator. Numbers represent the sequence of operations completion.393

When Tr wants to execute T , it creates a flag object LTr initialized to 0 and (atomically)394

enqueues it in Q, which effectively suspends its execution. After that, Tr spins until LTr395

is set to 1. When LTr becomes top standing in Q, TQ dequeues it. Then, TQ sets a flag396

associated with Q, called LQ, and also sets LTr to 1 (in that order). By setting LTr , Tr will397

be signaled to proceed with its HTM execution. By setting LQ, TQ is suspended until the398

2 Flags are implemented as volatile shared memory locations.

OPODIS 2019

31:10 HaTS: Hardware-assisted Transaction Scheduler

Transaction T executed
by thread TR

Dispatcher Thread TQ for
scheduling Queue Q

Initialization 1. Generate LQ for Q
2. LQ = 0

1. Create LTR for T
2. LTR = 0
3. LTR enqueued in Q
4. Wait until LTR = 1

Execution of T
5. LTR dequeued from Q
6. LQ = 1
7. LTR = 1
8. Wait until LQ = 09. HTM execution of T

10. LQ = 0
11. Dispatch next transaction

Figure 2 Synchronization between application threads and dispatcher threads. For simplicity,
the example accounts for a single dispatcher thread per scheduling queue.

completion of T by Tr. This suspension is implemented by spinning over the LQ flag. When399

T is committed, Tr resets LQ so that TQ can dequeue the next thread execution waiting on400

Q. Note that TQ is not notified if T is aborted and restarted for another HTM trial or if T ’s401

execution falls back to the software path. TQ is resumed only after T ’s successful completion.402

In our implementation we use simple flags to synchronize two threads (i.e., application403

thread and dispatcher thread) because we deploy one dispatcher thread for each scheduling404

queue. As introduced earlier, HaTS allows for multiple dispatcher threads per queue in order405

to cope with the case where the mapping between conflict indicators and scheduling queues406

is unnecessarily unbalanced, meaning many transactions, possibly with different conflict407

indicators, are grouped on the same scheduling queue. In the case where multiple dispatcher408

threads are deployed per conflict queue, the same synchronization scheme illustrated before409

applies, with the following differences. First, LTr flags should be atomically set (e.g., using a410

Compare-And-Swap operation) to synchronize between dispatcher threads. Also, multiple411

LQ flags, one per dispatcher thread, are needed to signal each dispatcher thread that it may412

proceed to schedule the next transaction.413

Scheduling queues are implemented in a lock-free manner [19] in order to speed up414

the thread execution’s suspension step. Also, in the above description we simplified the415

presentation by saying that application threads and dispatcher threads spin over flags to416

suspend/resume their execution. In the actual implementation, threads yield their execution417

in order to let computing resources available so that the machine can be oversubscribed (if418

needed) to maximize CPU utilization.419

5 Evaluation420

HaTS is implemented in C++ and integrated into the software framework of SEER [13]. An421

advantage of using a unique software architecture for all competitors is that independent422

optimization of low-level components does not bias performance towards some implementation.423

In other words, the performance differences reported in our plots are due to the algorithmic424

differences between competitors.425

Our goal is to assess the practicality of HaTS in standard benchmarks for in-memory426

transactional execution. Hence, we used STAMP [23], a benchmark suite of eight concurrent427

applications that span several application domains with different execution patterns. Due to428

space limitations, we present in detail the results of two applications, Kmeans and Vacation,429

Z. Chen and A. Hassan and M. J. Kishi and J. Nelson and R. Palmieri 31:11

since they cover two different and important cases in which the characteristics of HaTS are430

highlighted. Then, we summarize the results with the other applications.431

We compare HaTS against the scheduling techniques provided in the SEER framework,432

which are (in addition to SEER itself): Hardware Lock Elision (HLE) [26], Restricted433

Transactional Memory (RTM) [27], and Software-assisted Conflict Management (SCM) [1].434

Shortly, SEER is the state-of-the-art probability-based scheduling mechanism that uses435

fine-grained (pairwise) locks to prevent transactions that are likely to conflict from executing436

concurrently. HLE transforms atomic blocks protected by locks into hardware transactions437

and its software fallback path is protected by the original lock itself. In STAMP, a single lock438

for each atomic block is deployed. RTM supports a configurable number of retries before439

falling back to a single global lock shared among all hardware transactions. SCM implements440

a scheduling technique that serializes the aborted transactions to decrease the chance of441

further aborts. In all implementations, except HLE, transactions try at most five times in442

hardware before migrating to the software fallback path.443

Experiments were conducted using a multi-processor platform equipped with 4 Intel Xeon444

Platinum 8160 processors (2.1GHz, 24 cores per CPU). The machine provides 96 physical445

cores and a total of 768 GB of memory divided into 4 NUMA zones. In our experiments we446

ran up to 64 application threads to leave resources for dispatcher threads (one per queue)447

and the updater thread. The maximum number of scheduling queues is statically set to 30448

prior execution, and we used the default operating system policy to map application threads449

to cores.450

In Figure 3, we report for each application three performance metrics: (left column) spee-451

dup over sequential non-instrumented execution; (middle column) percentage of transactions452

committed through HTM; (right column) among those committed in HTM, percentage of453

transactions retried more than one time. Generally, the last two metrics are indicators of454

the scheduling effectiveness in reducing abort rate. The speedup metric is an indicator of455

whether such a reduction in abort rate is reflected in overall performance improvement or the456

scheduling overhead nullifies performance benefits. Performance at one application thread457

represent the slowdown of the sequential instrumented execution. All results are the average458

of 10 repeated tests.459

The first application is Kmeans, a clustering algorithm that groups points into K clusters.460

Transactions are used by the application to synchronize the concurrent updates to the same461

cluster’s center node. For this reason, we select the address of the center node updated by462

the transaction as its conflict indicator. We implemented that by passing the address of this463

center node as a parameter to STAMP’s TM-BEGIN function. Our main observation is that464

identifying this conflict indicator allows HaTS to significantly reduce abort rate, reaching up465

to 1.5x reduction with respect to the closest competitor, and improve performance, reaching466

up to 2x better speedup over the closest competitor. SEER’s probabilistic approach is the467

second best in terms of abort rate, which means that its approach is still able to capture468

conflicts, but not as effectively as using HaTS’s conflict indicator. Moreover, SEER’s speedup469

significantly decreases with higher number of threads, due to its locking overhead.470

HLE does not perform well due to the lemming effect, which is visible as soon as few471

transactions fall back to locking. RTM is generally better than HLE due to its multiple472

retries in HTM before falling back to locking. SCM provides the worst performance. This is473

because the way SCM serializes conflicting transactions does not prevent new conflicts of474

incoming transactions, as opposed to the proactive scheduling approach, such as the one of475

HaTS and SEER. Also, the probability SCM executes non-conflicting transactions serially is476

higher than HaTS because it does not use any conflict indicators.477

OPODIS 2019

31:12 HaTS: Hardware-assisted Transaction Scheduler

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

ge
no

m
e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

ge
no

m
e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

ge
no

m
e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

ge
no

m
e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

ge
no

m
e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

ge
no

m
e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

HaTS RTM HLE SCM SEER

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50 60 70

v
a
c
a
ti
o
n
-h

ig
h

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.64
 0.66
 0.68
 0.7

 0.72
 0.74
 0.76
 0.78
 0.8

 0.82
 0.84

 0 10 20 30 40 50 60 70

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70

k
m

e
a
n
s
-l
o
w

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70

k
m

e
a
n
s
-h

ig
h

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70

Figure 3 Results with applications of STAMP benchmark. For each row, the left plot shows
speedup over sequential (non-instrumented) execution; center plot shows the ratio of committed
transactions in HTM; the right plot shows the ratio of transactions retried more than one time.
X-axis shows number of application threads.

The difference between the high and low configuration of Kmeans is mainly in the478

maximum achieved speedup. However, the patterns of the compared algorithms remain479

the same, which shows the capability of HaTS to gain performance even in relatively low-480

contention workloads.481

The second application is Vacation, which simulates an online reservation system. Unlike482

Kmeans, most transactions in Vacation apply operations on a set of randomly selected483

objects, therefore with this pattern it is hard to identify a single conflict indicator per484

transaction. For that reason, we adopt an approach where each transaction uses a unique485

conflict indicator, with the exception of transactions that access a single customer object,486

where we use the customer ID as a conflict indicator. Our rationale behind this decision is487

that even if transactions are conflicting, HaTS’s dynamic adjustment of scheduling queues488

reduces the level of parallelism and saves aborts. Indeed HaTS achieves an abort rate similar489

to SEER, and moreover it scales better than SEER.490

Summarizing our results of the other STAMP benchmarks (Figure 4) Intruder and Yada491

give the same conclusions: the lightweight queuing approach in HaTS allows it to perform492

better than SEER, especially for high number of threads, due to the overhead of SEER’s493

locking mechanism. SSCA and Genome are low-contention benchmarks, and their abort rates494

are very low even without scheduling or contention management. Hence, none of the compared495

Z. Chen and A. Hassan and M. J. Kishi and J. Nelson and R. Palmieri 31:13

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

ge
no

m
e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

ge
no

m
e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

ge
no

m
e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70
ge

no
m

e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

ge
no

m
e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

ge
no

m
e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

HaTS RTM HLE SCM SEER

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

in
tr

u
d
e
r

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70

y
a
d
a

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 10 20 30 40 50 60 70
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 10 20 30 40 50 60 70

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

ge
no

m
e

qs
rtm
hle

scm
seer

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50 60 70

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70

s
s
c
a
2

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70

Figure 4 Performance results on the remaining applications of STAMP benchmark. X-axis shows
number of application threads.

algorithms had a significant improvement over the others. However, HaTS maintains its496

performance better than others when the number of threads (and thus contention level)497

increases. We excluded Bayes and Labyrinth because it is known they provide unstable,498

and thus unreliable, results [13].499

6 Conclusion500

In this paper we presented HaTS, a Hardware-assisted Transaction Scheduler. HaTS groups501

incoming transactions into scheduling queues depending upon the specified conflict indicators.502

HaTS exploits the HTM conflict resolution to cope with the possibility of having erroneous503

conflict indicators or when conflict indicators are complex to identify. Results using the504

STAMP benchmark show that HaTS provides improvements in both high contention and505

low contention workloads.506

OPODIS 2019

31:14 HaTS: Hardware-assisted Transaction Scheduler

References507

1 Yehuda Afek, Amir Levy, and Adam Morrison. Software-improved hardware lock elision. In508

Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC509

’14, pages 212–221, New York, NY, USA, 2014. ACM. URL: http://doi.acm.org/10.1145/510

2611462.2611482, doi:10.1145/2611462.2611482.511

2 Dan Alistarh, Syed Kamran Haider, Raphael Kübler, and Giorgi Nadiradze. The transactional512

conflict problem. In Proceedings of the 30th on Symposium on Parallelism in Algorithms513

and Architectures, SPAA ’18, pages 383–392, New York, NY, USA, 2018. ACM. URL:514

http://doi.acm.org/10.1145/3210377.3210406, doi:10.1145/3210377.3210406.515

3 Dan Alistarh, Justin Kopinsky, Petr Kuznetsov, Srivatsan Ravi, and Nir Shavit. Inherent516

limitations of hybrid transactional memory. Distributed Computing, 31(3):167–185, Jun 2018.517

URL: https://doi.org/10.1007/s00446-017-0305-3, doi:10.1007/s00446-017-0305-3.518

4 Mohammad Ansari, Behram Khan, Mikel Luján, Christos Kotselidis, Chris C. Kirkham, and519

Ian Watson. Improving performance by reducing aborts in hardware transactional memory.520

In High Performance Embedded Architectures and Compilers, 5th International Conference,521

HiPEAC 2010, Pisa, Italy, January 25-27, 2010. Proceedings, pages 35–49, 2010.522

5 Mohammad Ansari, Mikel Luján, Christos Kotselidis, Kim Jarvis, Chris C. Kirkham, and523

Ian Watson. Steal-on-abort: Improving transactional memory performance through dynamic524

transaction reordering. In High Performance Embedded Architectures and Compilers, Fourth525

International Conference, HiPEAC 2009, Paphos, Cyprus, January 25-28, 2009. Proceedings,526

pages 4–18, 2009.527

6 Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill, Michael M. Swift,528

and David A. Wood. Performance pathologies in hardware transactional memory. In 34th529

International Symposium on Computer Architecture (ISCA 2007), June 9-13, 2007, San Diego,530

California, USA, pages 81–91, 2007.531

7 Harold W. Cain, Maged M. Michael, Brad Frey, Cathy May, Derek Williams, and Hung Le.532

Robust architectural support for transactional memory in the power architecture. In ISCA,533

pages 225–236, 2013.534

8 Irina Calciu, Justin Gottschlich, Tatiana Shpeisman, Gilles Pokam, and Maurice Herlihy.535

Invyswell: A hybrid transactional memory for haswell’s restricted transactional memory. In536

Proceedings of the 23rd International Conference on Parallel Architectures and Compilation537

Techniques, PACT ’14, 2014.538

9 Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Stefanie Chiras, and539

Siddhartha Chatterjee. Software transactional memory: Why is it only a research toy? Queue,540

6(5):40:46–40:58, September 2008. URL: http://doi.acm.org/10.1145/1454456.1454466,541

doi:10.1145/1454456.1454466.542

10 Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early experience with a commercial543

hardware transactional memory implementation. In Proceedings of the 14th International544

Conference on Architectural Support for Programming Languages and Operating Systems,545

ASPLOS XIV, pages 157–168, New York, NY, USA, 2009. ACM. URL: http://doi.acm.org/546

10.1145/1508244.1508263, doi:10.1145/1508244.1508263.547

11 Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In Shlomi Dolev, editor,548

Distributed Computing, volume 4167 of Lecture Notes in Computer Science, pages 194–208.549

Springer Berlin Heidelberg, 2006. URL: http://dx.doi.org/10.1007/11864219_14, doi:550

10.1007/11864219_14.551

12 Nuno Diegues and Paolo Romano. Self-tuning intel transactional synchronization extensions.552

In 11th International Conference on Autonomic Computing, ICAC ’14. USENIX Association,553

2014.554

13 Nuno Diegues, Paolo Romano, and Stoyan Garbatov. Seer: Probabilistic scheduling for555

hardware transactional memory. In Proceedings of the 27th ACM Symposium on Parallelism556

in Algorithms and Architectures, SPAA ’15, pages 224–233, New York, NY, USA, 2015. ACM.557

URL: http://doi.acm.org/10.1145/2755573.2755578, doi:10.1145/2755573.2755578.558

http://doi.acm.org/10.1145/2611462.2611482
http://doi.acm.org/10.1145/2611462.2611482
http://doi.acm.org/10.1145/2611462.2611482
http://dx.doi.org/10.1145/2611462.2611482
http://doi.acm.org/10.1145/3210377.3210406
http://dx.doi.org/10.1145/3210377.3210406
https://doi.org/10.1007/s00446-017-0305-3
http://dx.doi.org/10.1007/s00446-017-0305-3
http://doi.acm.org/10.1145/1454456.1454466
http://dx.doi.org/10.1145/1454456.1454466
http://doi.acm.org/10.1145/1508244.1508263
http://doi.acm.org/10.1145/1508244.1508263
http://doi.acm.org/10.1145/1508244.1508263
http://dx.doi.org/10.1145/1508244.1508263
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1007/11864219_14
http://doi.acm.org/10.1145/2755573.2755578
http://dx.doi.org/10.1145/2755573.2755578

Z. Chen and A. Hassan and M. J. Kishi and J. Nelson and R. Palmieri 31:15

14 Shlomi Dolev, Danny Hendler, and Adi Suissa. CAR-STM: scheduling-based collision avoidance559

and resolution for software transactional memory. In Proceedings of the Twenty-Seventh Annual560

ACM Symposium on Principles of Distributed Computing, PODC 2008, Toronto, Canada,561

August 18-21, 2008, pages 125–134, 2008.562

15 Aleksandar Dragojevic, Rachid Guerraoui, Anmol V. Singh, and Vasu Singh. Preventing563

versus curing: avoiding conflicts in transactional memories. In Proceedings of the 28th Annual564

ACM Symposium on Principles of Distributed Computing, PODC 2009, Calgary, Alberta,565

Canada, August 10-12, 2009, pages 7–16, 2009.566

16 Ricardo Filipe, Shady Issa, Paolo Romano, and João Barreto. Stretching the capacity of567

hardware transactional memory in ibm power architectures. In Proceedings of the 24th568

Symposium on Principles and Practice of Parallel Programming, PPoPP ’19, pages 107–119,569

New York, NY, USA, 2019. ACM. URL: http://doi.acm.org/10.1145/3293883.3295714,570

doi:10.1145/3293883.3295714.571

17 Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran. Transactional interference-less572

balanced tree. In Distributed Computing - 29th International Symposium, DISC 2015, Tokyo,573

Japan, October 7-9, 2015, Proceedings, pages 325–340, 2015.574

18 Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for575

lock-free data structures. In Proceedings of the 20th Annual International Symposium on576

Computer Architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993. ACM. URL:577

http://doi.acm.org/10.1145/165123.165164, doi:10.1145/165123.165164.578

19 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann579

Publishers Inc., San Francisco, CA, USA, 2008.580

20 Junwhan Kim, Roberto Palmieri, and Binoy Ravindran. Enhancing concurrency in distributed581

transactional memory through commutativity. In Felix Wolf, Bernd Mohr, and Dieter an Mey,582

editors, Euro-Par 2013 Parallel Processing, pages 150–161, Berlin, Heidelberg, 2013. Springer583

Berlin Heidelberg.584

21 Alexander Matveev and Nir Shavit. Reduced hardware transactions: A new approach to585

hybrid transactional memory. In Proceedings of the Twenty-fifth Annual ACM Symposium on586

Parallelism in Algorithms and Architectures, SPAA ’13, pages 11–22, New York, NY, USA,587

2013. ACM. URL: http://doi.acm.org/10.1145/2486159.2486188, doi:10.1145/2486159.588

2486188.589

22 Alexander Matveev and Nir Shavit. Reduced hardware norec: A safe and scalable hybrid590

transactional memory. In Proceedings of the Twentieth International Conference on Architec-591

tural Support for Programming Languages and Operating Systems, ASPLOS ’15, pages 59–71,592

New York, NY, USA, 2015. ACM. URL: http://doi.acm.org/10.1145/2694344.2694393,593

doi:10.1145/2694344.2694393.594

23 Chi Cao Minh, Jaewoong Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford trans-595

actional applications for multi-processing. In Workload Characterization, 2008. IISWC596

2008. IEEE International Symposium on, pages 35–46, Sept 2008. doi:10.1109/IISWC.2008.597

4636089.598

24 M. Mohamedin, R. Palmieri, A. Hassan, and B. Ravindran. Managing Resource Limitation of599

Best-Effort HTM. IEEE Transactions on Parallel and Distributed Systems, 28(8):2299–2313,600

Aug 2017. doi:10.1109/TPDS.2017.2668415.601

25 Mohamed Mohamedin, Roberto Palmieri, and Binoy Ravindran. Brief announcement: On602

scheduling best-effort htm transactions. In Proceedings of the 27th ACM Symposium on603

Parallelism in Algorithms and Architectures, SPAA ’15, pages 74–76, New York, NY, USA,604

2015. ACM. URL: http://doi.acm.org/10.1145/2755573.2755612, doi:10.1145/2755573.605

2755612.606

26 Ravi Rajwar and James R. Goodman. Speculative lock elision: enabling highly concurrent607

multithreaded execution. In Proceedings of the 34th Annual International Symposium on608

Microarchitecture, Austin, Texas, USA, December 1-5, 2001, pages 294–305, 2001.609

OPODIS 2019

http://doi.acm.org/10.1145/3293883.3295714
http://dx.doi.org/10.1145/3293883.3295714
http://doi.acm.org/10.1145/165123.165164
http://dx.doi.org/10.1145/165123.165164
http://doi.acm.org/10.1145/2486159.2486188
http://dx.doi.org/10.1145/2486159.2486188
http://dx.doi.org/10.1145/2486159.2486188
http://dx.doi.org/10.1145/2486159.2486188
http://doi.acm.org/10.1145/2694344.2694393
http://dx.doi.org/10.1145/2694344.2694393
http://dx.doi.org/10.1109/IISWC.2008.4636089
http://dx.doi.org/10.1109/IISWC.2008.4636089
http://dx.doi.org/10.1109/IISWC.2008.4636089
http://dx.doi.org/10.1109/TPDS.2017.2668415
http://doi.acm.org/10.1145/2755573.2755612
http://dx.doi.org/10.1145/2755573.2755612
http://dx.doi.org/10.1145/2755573.2755612
http://dx.doi.org/10.1145/2755573.2755612

31:16 HaTS: Hardware-assisted Transaction Scheduler

27 James Reinders. Transactional synchronization in haswell. Intel Soft-610

ware Network. URL: http: // software. intel. com/ en-us/ blogs/ 2012/ 02/ 07/611

transactional-synchronization-in-haswell/ , 2012.612

28 Hugo Rito and João P. Cachopo. Props: A progressively pessimistic scheduler for software613

transactional memory. In Euro-Par 2014 Parallel Processing - 20th International Conference,614

Porto, Portugal, August 25-29, 2014. Proceedings, pages 150–161, 2014.615

29 Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E. Ramadan, Bhandari616

Aditya, and Emmett Witchel. Txlinux: using and managing hardware transactional memory617

in an operating system. In Proceedings of the 21st ACM Symposium on Operating Systems618

Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007, pages 87–102,619

2007.620

30 Lingxiang Xiang and Michael L. Scott. Conflict reduction in hardware transactions using621

advisory locks. In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms622

and Architectures, SPAA ’15, pages 234–243, New York, NY, USA, 2015. ACM. URL:623

http://doi.acm.org/10.1145/2755573.2755577, doi:10.1145/2755573.2755577.624

31 Richard M. Yoo and Hsien-Hsin S. Lee. Adaptive transaction scheduling for transactional625

memory systems. In SPAA 2008: Proceedings of the 20th Annual ACM Symposium on626

Parallelism in Algorithms and Architectures, Munich, Germany, June 14-16, 2008, pages627

169–178, 2008.628

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://doi.acm.org/10.1145/2755573.2755577
http://dx.doi.org/10.1145/2755573.2755577

	Introduction
	Related Work
	Background: Scheduling Best-effort Hardware Transactions
	Hardware Transaction Scheduler
	Transaction Conflict Indicator
	Dynamic Distribution of Scheduling Queues
	Multiple Dispatchers

	Transaction Execution Flow
	Suspending/Resuming Executions with Scheduling Queues

	Evaluation
	Conclusion

