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Abstract
Goal-driven autonomy (GDA) agents reason about
goals while introspectively examining if their
course of action matches their expectations. Many
GDA agents adopt a hierarchical planning model
to generate plans but limit reasoning with expec-
tations to individual actions or projecting the ex-
pected state. In this paper we present a relaxation
of this limitation. Taking advantage of hierarchical
planning principles, our GDA agent elicits expec-
tations that not only validate the next action but the
overall plan trajectory without requiring validation
against the complete state. We report on (1) a for-
malization of GDA’s expectations that covers tra-
jectories, (2) an implementation of these ideas and
(3) benchmarking on two domains used in the GDA
literature.

1 Introduction
Goal-driven autonomy (GDA) is a goal reasoning model
where an agent interacts in its environment through introspec-
tively examining its own decisions to decide which goal to
achieve next [Muñoz-Avila et al., 2010; Weber et al., 2010;
Molineaux et al., 2010]. One of the key steps of GDA is
discrepancy detection: discerning if the agent’s own expecta-
tions are met in the current state of the environment. When
expectations are not met (i.e., a discrepancy occurs), GDA
agents trigger a process that leads to the selection of a new
goal for the agent to fulfill. Hence, the agent reasoning about
its own expectations is a crucial step in the GDA process.

Despite this, not much effort is reported on how the GDA
agents infer their own expectations. Most research on GDA
focuses on other aspects of the GDA process such as: ex-
plaining why the expectations were not met [Molineaux et
al., 2012; Finestrali and Muñoz-Avila, 2013], the procedure
by which a new goal is selected [Paisner et al., 2013], and
automated learning of GDA knowledge [Jaidee et al., 2011;
Weber et al., 2012].

Inferring the expectations of a GDA agent can have a sig-
nificant impact on the performance of the agent. If the ex-
pectations are too narrow, then relevant discrepancies might
be missed. As a result, the agent will not change its course
of action (by choosing a new goal) in situations where it

should have done so. If the expectations are too broad, the
agent might unnecessarily trigger the process to generate a
new goal. This could lead to the agent taking unnecessary
actions that negatively affect the agent’s overall performance
[Muñoz-Avila et al., 2010].

Research on GDA agents has explored two kinds of expec-
tations thus far [Muñoz-Avila et al., 2010; Molineaux et al.,
2010]. The first approach is to check if the preconditions of
the next action are satisfied before it is executed and to check
that its effects are satisfied after it is executed. We refer to
these expectation as immediate expectations. This ensures
the validity of the actions and the rapid evaluation of their
applicability. An argument can be made that since previous
actions are already committed, there is no point in validating
them. However, such evaluation ignores if the trajectory of
the plan is still valid (i.e., if its overarching objectives will
be fulfilled). Consider an agent that is navigating in an en-
vironment activating beacons. In this environment external
factors cause beacons to be disabled which cause plan fail-
ure. The immediate expectations will only check a particular
beacon immediately after it is activated. In the event that the
beacon becomes disabled later, the agent will not detect this
discrepancy.

The second approach explored is to annotate every action
with the expected state after the action is executed. We refer
to these expectations as state expectations. This ensures that
the system not only validates that the next action is valid but
it also validates that the overall trajectory of the plan being
executed will fulfill its overarching goals. Continuing our ex-
ample the agent will detect beacons which it had previously
switched on but were later disabled, unlike an agent using
immediate expectations. Yet discrepancies in the state do not
necessarily imply that the plan trajectory or even individual
actions are no longer valid. For example, beacons unrelated
to the agent’s goal might activate or deactivate as a result of
the environment. These changes do not affect the agent’s cur-
rent plan. However, an agent using state expectations this to
be a discrepancy and may take action.

In this paper we explore an intermediate approach to infer
the plan’s expectations. Taking advantage of hierarchical task
network (HTN) representations, which many GDA agents al-
ready adopt, our agents elicit expectations that not only val-
idate the next action but the overall plan trajectory without
requiring validation against the complete state.



Our contributions are the following:

• A formalization of GDA’s expectations that covers the
validation of, both, the next action and the plan trajec-
tory without requiring to check the complete state.

• A GDA agent implementing this formalization. This im-
plementation is based on HTN representations. Hence,
our research can be applicable to other GDA agents
without the need to encode additional knowledge.

• An empirical validation in two variants of domains used
in the GDA literature. We evaluate our GDA agent ver-
sus alternative GDA agents that either check immediate
effects or check for expected states. Our experiments
demonstrate improved performance of our GDA agent.

2 Goal-driven Autonomy
Goal Driven Autonomy is a goal reasoning method for prob-
lem solving in which autonomous agents dynamically iden-
tify and self-select their goals throughout execution. The
objective of goal-driven autonomy is to enable autonomous
agents to direct the focus of their activities, and thus become
more self-sufficient. GDA has been shown to be amenable
to many application areas including cognitive architectures
[Choi, 2011], goal generation [Hanheide et al., 2010], goal
selection in a mixed initiative [Baxter and Richards, 2010],
and meta-reasoning [Cox, 2007]. Reports on potential ap-
plications include simulated [Meneguzzi and Luck, 2007]
and physically-grounded [Hanheide et al., 2010] robots, real-
time strategy games [Weber et al., 2010; Jaidee et al., 2013;
Dannenhauer and Muñoz-Avila, 2013], first-person shooter
games [Muñoz-Avila et al., 2010], and Navy training simu-
lators [Molineaux et al., 2010; Powell et al., 2011], among
others.

GDA agents monitor execution and check if the outcomes
of the agent’s actions match the agent’s own expectations.
When discrepancies occur (i.e., when the outcomes do not
meet expectations), a GDA monitor will suggest alternative
goals. GDA agents generally follow a four-step cycle: dis-
crepancy detection (i.e., check if the outcome of the agent’s
actions match expectations), explanation (i.e., explain the rea-
sons for discrepancies), goal formulation (i.e., formulate new
goals based on the explanations) and goal management (i.e.,
managing two or more goals that the agent is tasked with pur-
suing).

The GDA model makes no commitments to the choice of
algorithms and representation for these four tasks. Although
most GDA systems adopt standard planning formalisms in-
cluding notions of state and action, which we also adopt.

3 Formalization
3.1 Preliminaries
We use HTN task decomposition as in the SHOP plan-
ner [Nau et al., 1999] and implemented in the Python ver-
sion, PyHop. PyHop uses the state-variable representation
[Bäckström and Nebel, 1995]. Informally, a variable can take
one of several values (e.g., one may write above(x)=y to indi-
cate that block x is on top of block y) and a state S indicates

specific values for each variable (we also use a generic unde-
fined value when variables have not been instantiated). A task
is a symbolic representation of an activity in the world. Tasks
can be primitive or compound. Primitive tasks are accom-
plished by operators, which have the form o = (h, pre, eff ),
where h is a primitive task, and pre, eff are the preconditions
and the effects of the operator. Actions are grounded instances
of operators.

An action a is applicable to a state S if its preconditions
hold in that state. The result of applying a to S is a new
state S′ = result(a, S), that changes the variables’ values as
indicated in the effects. A plan π is a sequence of actions.

A compound task is a symbolic representation of a com-
plex activity. An HTN method describes how and when to
decompose compound tasks into simpler tasks. A method is a
triple m = (h, pre, subtasks), where h is a compound task,
pre are the preconditions of the method, and subtasks is a
totally-ordered sequence of tasks.

A method m is applicable to a state S and task t if h
matches t and its preconditions are satisfied in S. The re-
sult of applying method m on state S to decompose task t are
the subtasks (subtasks are said to be a reduction of t in state
S).

An HTN planning problem is a 3-tuple (S, T,D), where S
is a state, T = (t1, ..., tn) is a sequence of tasks, and D is the
domain consisting of a set of operators and a set of methods.

A plan π = (a1...am) is a solution for the HTN planning
problem (S,T,D) if the following are true:

Case 1. If T = ∅ then π = () (i.e., m = 0)
Case 2. If T 6= ∅ (i.e., m ≥ 1)
Case 2.1 If t1 is primitive and a1 is applicable in S and

(a2...am) is a solution for (result(a1, S), (t2, ..., tn), D)
Case 2.2 If t1 is compound and (r1, ..., rd) is a

reduction of t1 in state S and π is a solution for
((r1, ..., rd, t2, ..., tn), S,D).

3.2 Expectations
The first form of expectations are immediate expecta-
tions. Given a plan π = (a1...am), the immediate ex-
pectation, EXimm(S, π) = (pre(am), eff (am)). That is,
EXimm(S, π) consists of the preconditions and effects of the
last action in π. The same definition can be applied to any
prefix of the plan. Immediate expectations check the validity
of the next action to be executed.

The second form of expectations are state expectations.
Given a state S and a plan π = (a1...am), Result(π, S),
applying a plan to a state, extends the notion of applying an
action to a state, Result(a, S), as follows:

Case 1. If π = (), then Result(π, S) = S
Case 2. If π 6= (), then Result(π, S) =

Result((a2, ..., am), Result(a1, S))
We assume that action a1 is applicable in S and that

every action ak (k ≥ 1) in π is applicable to state
Result((a1, ..., ak−1), S). Otherwise, Result(π, S) = nil.
This recursive definition computes the resulting state for any
prefix of the plan and checks the complete state after each
action is executed.

Given a state S, a collection of tasks T = (t1, ..., tn),
and a plan π = (a1...am) solving an HTN planning problem



(S, T,D), we define informed expectations, the third form of
expectation,EXinf (T, S), and the focus of this paper. To de-
fine it, we first define Result(T, S), the state resulting after
applying tasks to states:

Case 1. If T = ∅, then Result(T, S) = S
Case 2. If T 6= ∅
Case 2.1 If t1 is primitive then:
Result(T, S) = Result((t2, ..., tn), Result(a1, S))
Case 2.2 If t1 is compound then:
Result(T, S) = Result((t2, .., tn), S

′) where S′ =
Result((r1, ..., rd), S) and (r1, ..., rd) is the reduction of task
t1 on state S generating π.

Let φ denote the state where every variable is unde-
fined. Let ξ denote the expectation, which is a place-
holder for EXinf We can now define informed expectations,
EXinf (T, S) = Resultinf (T, φ, S), as follows:

Case 1. If T = ∅, then Resultinf (T, ξ, S) = ξ
Case 2. If T 6= ∅
Case 2.1 If t1 is primitive then:
Resultinf (T, ξ, S) = Resultinf ((t2, ..., tn), ξ

′, S′),
where ξ′ = (ξ . pre(a1)) . eff (a1) and S′ = Result(a1, S).
Given two states A and B, A . B denotes the state in which
each variable v is instantiated as follows: (1) v is undefined
if v is undefined in A and B, or (2) v takes the non-undefined
value c if v = c in B, or (3) v takes the non-undefined value
c if v = c in A and v is undefined in B.

Case 2.2 If t1 is compound then:
Resultinf (T, ξ, S) = Resultinf ((t2, ..., tn), ξ

′, S′),
where ξ′ = Resultinf ((r1, .., rd), ξ, S), S′ =
Result((r1, ..., rd), S) and (r1, ..., rd) is a reduction of
task t1 on state S.
EXinf (T, S) represents an intermediate point between

checking the action’s effects and checking for a complete
state after each action in the plan is executed. In general, for
the two cases above, ξ will have variables that are undefined
whereas the corresponding state S will have no undefined
variables. An agent using informed expectations only needs
to check in the environment for the values of those variables
that are not undefined. In contrast, an agent using state expec-
tations must check the values for all variables. EXinf (T, S)
is a recursive definition and, hence, defines the expectation
not only for the top level tasks T but for any task sequence in
the task hierarchy decomposing T .

4 Computing Expectations in HTN Planning
4.1 Immediate and State Expectations
Immediate expectations and state expectations are straightfor-
ward to compute within the SHOP planning algorithm (due to
space limitations and because of their simplicity we describe
them verbally here). Immediate expectations are computed
by building a list of expectations as the plan (i.e., list of ac-
tions) is generated. Each time a new action is appended to the
plan, that action’s definitions (i.e., preconditions and effects)
are added as an expectation to the expectations list. State
expectations are generated in an analogous manner; namely,
a list of expectations is generated alongside the plan. The
next state is stored after the current action is applied to the

previous state (like any forward state-search planner, SHOP
maintains the current state).

4.2 Informed Expectations
The pseudocode for calculating informed expectations is de-
scribed in Algorithm 1. For any task sequence (t1, ..., tn)
occurring during the HTN planning process, ex stores the ex-
pectations, including the expectation of the last task, tn, of
that sequence. Our algorithm extends the SHOP planning
algorithm [Nau et al., 1999]. The extensions to the SHOP
algorithm presented here are underlined for easy reference.
This algorithm computes the following: (1) a plan π solving
the HTN planning problem (S, T,D), (2) a dictionary, ex,
mapping for each task t its expectation ex[t], (3) another dic-
tionary, sub, mapping for a task t its children subtasks, sub[t].

The auxiliary procedure SEEK-EX is called with the HTN
planning problem (S, T,D), the plan π computed so far (ini-
tially empty) and the informed expectation exprev of the pre-
vious action in the current plan (initially empty) (Lines 3 and
4). Because informed expectations are cumulative, the plan-
ner must maintain the previous expectation throughout the re-
cursion.

Algorithm 1 Informed Expectations

1: Global ex, sub
2: procedure FIND-EX(S, T,D)
3: return SEEK-EX(S, T,D, (), ())
4: procedure SEEK-EX(S, T,D, π, exprev)
5: if T = nil then return ((),exprev)

6: t as the first task in T ; R = the remaining tasks
7: if t is primitive then
8: if there is an action q achieving t then
9: if this is the first action then

10: ex[start] = pre(q)

11: ex[t]← (exprev . pre(q)) . eff (q)
12: sub[t]← ()

13: π ← append(π, q)
14: return SEEK-EX(result(q, S), π,R,D, ex[t])
15: else
16: return Fail
17: else
18: for every reduction r of t in S do
19: sub[t]← r

20: (πt, ex[t])← SEEK-EX(S, r,D, (), exprev)
21: π′ ← append(π, πt)
22: S′ ← result(πt, S)
23: t′ ← last task of T
24: (π, ex[t′])← SEEK-EX(S′, R,D, π′, ex[t])
25: if π 6= Fail then
26: return (π, ex[t′])

27: return Fail

If the first task t in T is primitive (Lines 6 and 7), then it
finds an action q that achieves t (Line 8). If this is the first
action in the plan, then the preconditions of that action are



stored as the very first expectation (Line 10). This expectation
is stored in the dictionary with a key value of a special start
symbol and not a task (Lines 9 and 10). All other key values
of the dictionary are task names.

Line 11 produces the informed expectation for the primi-
tive task t. Since t is primitive, it has no children (Line 12).
The expectation for task t, ex[t] becomes the previous expec-
tation and it is then passed into the recursive call of SEEK-EX
(Line 14).

Line 18 handles the case that t is not primitive, and there-
fore may have one or more reductions for t in state S. There
are two recursive calls. First, a call is made on the reduc-
tion r; the resulting expectation is stored as the informed ex-
pectation of t (Line 20). The current plan, π′ is obtained by
appending the subplan πt to the end of the previous plan π
(Line 21). The current state, S′ is obtained by applying the
subplan πt to state S (Line 22). Second, a call is made on the
remaining tasks R (Line 24). The resulting expectation is the
expectation for the last task, t′ in T .

5 Experimental Setup
Each of the three different kinds of expectations (immediate,
state, informed) are implemented in otherwise identical GDA
agents. Specifically, all agents use the same goals, HTN plan-
ning domain, explanations, and goal formulation knowledge.
For the explanation knowledge, we have simple rules assign-
ing discrepancies to explanations (i.e., if the agent is not mov-
ing then it must be stuck). Analogously, for the goal for-
mulation we have simple rules assigning explanations to new
goals (i.e., if stuck then achieve unstuck goal). The simplicity
of our GDA agents is designed so we can adjudicate perfor-
mance differences among the agents to the different kinds of
expectations.

We use two domains from GDA literature. The first do-
main, which we call Marsworld, is inspired from Mudworld
from [Molineaux and Aha, 2014]. Mudworld is composed of
a discrete grid and every tile can either have mud or no mud;
mud is randomly generated with a 40% chance probability
per tile at the beginning of each scenario. The agent can only
observe its current and adjacent locations. The goal of the
agent is to navigate from its starting position to another tile at
least 4 tiles away.

In Mudworld mud is an obstacle that causes the speed of
the agent to be halved; in our domain Marsworld mud causes
the agent to be stuck. This difference allows us to examine
obstacles that require choosing new goals. The other differ-
ence between Marsworld and Mudworld is the addition of a
second task and a new obstacle. The new task is a beacon-
placing perimeter construction task in which the agent must
place and activate three beacons in locations at least two
spaces from any other beacon. The new obstacle is a mag-
netic radiation cloud which may appear on tiles and if shar-
ing the same tile as a deployed beacon, deactivates the beacon
from transmitting its signal. Unlike mud which is visible to
the agent when it is in an adjacent tile, magnetic radiation
clouds are not visible. While deployed and activated, the bea-
cons broadcast a signal. The agent may generate a goal to
reactivate a beacon by sending a signal to the beacon, which

will then become active unless another radiation cloud dis-
ables it again. These additions to the original Mudworld were
designed to add more complexity to the domain by having the
agents facing obstacles which affect some goals but not oth-
ers. Mud affects both navigation and perimeter-construction
whereas radiation clouds only affect the perimeter goal.

Execution cost of a plan in Marsworld is calculated as fol-
lows: moving from one tile to another has a cost of 1 and
placing a beacon has a cost of 1. The ‘unstuck’ action has
a cost of 5 (can be used when the agent finds itself in mud)
and the ’reactivate’ beacon via signal action has a cost of 1.
The following parameters were used in the Marsworld setup:
the grid was 10 by 10, the probability of mud was 10%, all
distances from start to destination were at least 5 tiles, and
magnetic radiation clouds had a 10% probability per turn per
tile to appear.

The second domain is a slight variant of the Arsonist do-
main from Paisner et al [Paisner et al., 2013]. This domain
uses the standard operators and goals from blocksworld do-
main, except the Arsonist domain features an arsonist who
randomly lights blocks on fire. The variation in our model
is the addition of a precondition to the stacking operator pro-
hibiting for the block underneath to be on fire so plans can
fail if the fire is not extinguished. In the original Arsonist
domain, the effect of a fire that was not extinguished was un-
defined in the planning domain. Originally fires that were
not put out would cause the score of the agent to decrease.
Since our work focuses on how different expectations affect
plan completion, adding this precondition causes execution
failure when fires are ignored. Execution cost of a plan in
our modified Arsonist domain is computed as follows: nor-
mal blocksworld operations (pickup, stack, unstack, etc) cost
1 and the action to extinguish a fire costs 5. The following pa-
rameters were used in the Arsonist domain: the domain con-
tained 20 blocks, the start state had every block on the table,
each goal was randomly generated where there were 3 towers
each with 3 blocks, and the probability of fire was 10%. In
both domains, if there are no obstacles then the execution cost
is the length of the plan.

6 Results
Figure 1 shows the average results of 5 runs from the GDA
agents on Marsworld and Arsonists domains respectively.
The x-axis is the number of plans the agent has executed thus
far and the y-axis is the cumulative execution cost (every data
point is the execution cost of the plan plus the previous execu-
tion cost). The solid red line presents the results for the agent
using immediate expectations, the blue dashed line is for the
agent using state expectations, and the green dot dashed line
is for the agent with informed expectations. As a reference,
the execution cost of plans with no obstacles is included: this
is the purple dotted line.

In the first domain (Figure 1 (a)), Marsworld, during nav-
igation goals the informed expectations agent and immedi-
ate expectations agent performed equally and took slightly
longer to execute than an agent facing no obstacles (Figure 1
(a)). However, the state agent ended up taking much longer
because it triggered false anomalies. This is due to mud ob-



Figure 1: Cumulative Execution Cost

(a) Marsworld (b) Arsonist

stacles that were not directly in its path but still counted as
discrepancies since the expected and actual states were not
the same. This is the result seen from the left half of the
graph (plans 1 to 1000). The right hand side of the graph
measures execution cost of plans from perimeter construc-
tion. Here, the immediate expectations agent falls below the
perfect agent (no obstacles) because it’s execution starts fail-
ing when it fails to detect beacons are missing/unavailable.
These failures result in a plan execution cost of 0 causing the
line to fall below the baseline. We also see that both, informed
and state agents, are able to succeed in completing the plan
although the informed expectations costs significantly less.

Figure 2 (a) shows the percentage of completed plans for
the immediate expectations agents since this was the only
agent that fail to complete plans. Each data point in this graph
represents the percentage of plans that were successful (i.e.
did not fail), averaged over 5 runs. The x-axis is the prob-
ability per tile per turn that a magnetic radiation cloud will
appear. The y-axis is the probability per tile of mud occur-
ring. The y-axis is the percentage of plans that were success-
ful after executing 20 perimeter plans with the corresponding
probabilities of mud and clouds. We conclude that clouds are
the only causes of failure (as opposed to mud). In the arson-
ist domain we see analogous behavior (Figure 2 (b)). As the
probability of fire increases (x-axis) the immediate expecta-
tions agent fails to complete more plans (y-axis).

7 Related Work
Plan-execution monitoring systems check if the current state
satisfies the effects of the action just executed and the precon-
ditions of the actions to be executed next. When this does not
happen and as a result the action is inapplicable, this is called
an expectation failure [Cox, 2007], which are the kinds of
failures we are focusing in this work. Other kinds of failures
have been proposed where even though they are not execu-
tion failures, the current execution exhibits some conditions
that are not desirable [Myers, 1999]. Others have suggested

failures associated with explicit quality conditions [Fritz and
McIlraith, 2007].

The study of expectation failures have been long-standing
particularly in the context of cognitive systems. Mechanisms
to enhance a domain description when planning failures occur
have been designed for cognitive systems (e.g., [Birnbaum et
al., 1990; Sussman, 1975]). In contrast to this research, GDA
systems generate new goals as a result of expectation failures.

Hierarchical representations have been a central topic in
many cognitive architectures (e.g., [Laird, 2012]). Part of the
motivation is the principle that Humans learn complex skills
by first acquiring simple skills, which then are combined to
learn more complex ones [Langley et al., 2004]. As a re-
sult, many cognitive architectures use hierarchical models to
represent relations between skills of different complexity. Hi-
erarchical modeling has led to a number of representation and
reasoning formalisms including frames [Minsky, 1975], rea-
soning by abstraction [Amarel, 1968], and hierarchical task
network (HTN) planning [Currie and Tate, 1991]. These for-
malisms have in common the use of certain kinds of con-
structs (i.e., objects, goals, and tasks) that represent knowl-
edge of varying degrees of complexity and that are connected
through hierarchical relations. In our work we adopt the HTN
planning formalism because of its clear semantics.

Our work is related to plan repair, which aims at modify-
ing the current plan when changes in the environment make
actions in the plan invalid [Van Der Krogt and De Weerdt,
2005]. Plan repair has also been studied in the context of
HTN planning [Warfield et al., 2007]. The main difference
between plan repair and GDA is that in the latter the goals
might change whereas plan repairs stick with the same goals
while searching for alternative plans.

Some GDA systems do not assume planning knowledge to
be given. For example, in [Virmani et al., 2008], a sequence
of code calls (i.e., headings of actions) is collected as ob-
served while a user is playing a computer game. The user is
then asked to annotate the code calls with literals that must
be valid in the state. Alternatively, learning of the planning



Figure 2: Plan Success vs. Obstacles (Immediate Expectations agent)

(a) Marsworld (b) Arsonist

model in the context of GDA has been studied [Jaidee et al.,
2011]. For GDA systems that assume the actions model (i.e.,
preconditions and effects) to be given, the expectations are the
state, as determined by the previously observed state and the
model of the actions executed [Cox, 2007]. In our work, we
use HTN plan representations, adopted by many GDA sys-
tems [Muñoz-Avila et al., 2010; Shivashankar et al., 2013;
Molineaux et al., 2010; Klenk et al., 2013]. Alternatives in-
clude using description logics to infer expectations after ex-
ecuting a plan [Bouguerra et al., 2007] and Petri nets to fol-
low the execution of the program [Ontañón and Ram, 2011].
Each code call is one edge in the Petri net and states connect
edges of the net. A token “jumps” from state to state as the
code calls software routines are executed. If the state is not
reached, this is a discrepancy and it can be represented by a
Boolean variable. So this is akin to what we call state expec-
tations.

Unlike STRIPS representations where the outcome of a
plan is directly related to whether the literals in the final state
reached satisfy the goals, HTN representations must, in prin-
ciple, consider if the pursued task is accomplished regardless
of the literals in the state reached. This is due to the seman-
tics of HTN planners where the state that is reached is not
necessarily linked to the task being accomplished. TMK and
TMKL2 have a similar characterization of expectations pre-
sented here but support debugging and adaptation in the con-
text of meta-reasoning [Murdock and Goel, 2008] while GDA
uses it for goal formulation. Informed expectations check lit-
erals in the space by projecting the informed state across tasks
at all levels of the HTN.

The notion of informed expectations is related to goal re-
gression [Mitchell et al., 1986]. Goal regression is the pro-
cess of finding the minimal set of literals in the initial state
required to generate a plan achieving some goals. This pro-
cess traverses a plan to collect all literals that are not added by
actions in the plan. In contrast, in our work we are identify-
ing the literals in the final state that are expected to hold. The
most important difference, however, is that we are computing
the expectations for tasks at all levels of the HTN.

8 Final Remarks

Over the last few years we have seen a significant increase
in research and applications of systems with increasing au-
tonomous capabilities. As these systems become more com-
mon, concerns have been raised about how we can design
autonomous systems that are robust. That is, a system that re-
liably operates within expected guidelines even when acting
in dynamic environments. Research about agent’s expecta-
tions can be seen as a step towards addressing this difficult
problem; reasoning about the agents’ own expectations en-
ables agents to check if the expectations of the course of ac-
tion are currently met. In this paper, we re-visit two kinds
of expectations discussed in the GDA literature: immediate
and state expectations. We formally define and implement
a third kind, informed expectations. Informed expectations
capture what is needed for plan trajectory (unlike immedi-
ate expectations) while ignoring changes in the environment
irrelevant to the current plan (unlike an agent using state ex-
pectations). Our experiments demonstrate improved perfor-
mance for GDA agents using informed expectations on two
metrics: execution costs and percentage of execution failures.

In future work, we will like to explore how informed
expectations combine with sophisticated failure explana-
tion mechanisms such as DiscoverHistory [Molineaux et al.,
2012], which learns new explanation over time. Such combi-
nation could enable, for example, meta-reasoning on failure
reasons, whereby the explanation module discovers flaws in
the domain knowledge. For instance, the explanation module
might identify a missing condition in the informed expecta-
tion and introspectively examine the HTN and suggest neces-
sary changes to methods and/or operators to add the missing
condition. The key insight is that we know informed expec-
tations compute the exact expectations for the current HTN
and hence missing conditions hypothesized by the explana-
tion module as necessary would imply a flaw in the HTN
knowledge base.
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[Bäckström and Nebel, 1995] Christer Bäckström and Bernhard
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