
Goal-Driven Autonomy with
Semantically-annotated Hierarchical Cases

Dustin Dannenhauer and Héctor Muñoz-Avila

Department of Computer Science and Engineering, Lehigh University, Bethlehem PA
18015, USA

Abstract. We present LUiGi-H a goal-driven autonomy (GDA) agent.
Like other GDA agents it introspectively reasons about its own expec-
tations to formulate new goals. Unlike other GDA agents, LUiGi-H uses
cases consisting of hierarchical plans and semantic annotations of the ex-
pectations of those plans. Expectations indicate conditions that must be
true when parts of the plan are executed. Using an ontology, semantic an-
notations are defined via inferred facts enabling LUiGi-H to reason with
GDA elements at different levels of abstraction. We compared LUiGi-H
against an ablated version, LUiGi, that uses non-hierarchal cases. Both
agents have access to the same base-level (i.e. non-hierarchical plans),
while only LUiGi-H makes use of hierarchical plans. In our experiments,
LUiGi-H outperforms LUiGi.

1 Introduction

Goal-driven autonomy (GDA) is a goal reasoning method in which agents intro-
spectively examine the outcomes of their decisions and formulate new goals as-
needed. GDA agents reason about their own expectations of actions by compar-
ing the state obtained after executing actions against an expected state. When
a discrepancy occurs, GDA agents formulate an explanation for the discrepancy
and based on this explanation, new goals are generated for the agent to pursue.

Case-based reasoning (CBR) has been shown to be an effective method in
GDA research. CBR alleviates the knowledge engineering effort of GDA agents
by enabling the use of episodic knowledge about previous problem-solving ex-
periences. In previous GDA studies, CBR has been used to represent knowledge
about the plans, expectations, explanations and new goals (e.g. [1][2][3]). A com-
mon trait of these works is a plain (non-hierarchical) representation for these
elements. In this work we propose the use of episodic GDA knowledge in the
form of hierarchical plans that reason on stratified expectations and explana-
tions modeled with ontologies. We conjecture that hierarchical representations
enable modeling of stronger concepts thereby facilitating reasoning of GDA ele-
ments beyond object-level problem solving strategies on top of the usual (plain)
plan representations.

To test our ideas we implemented a new system, which we refer to as LUiGi-H
and compared it against a baseline that uses plain GDA representations: LUiGi.
Crucially, both LUiGi-H and its baseline LUiGi include the same primitive plans.



2

That is, they have access to the same space of sequences of actions that define
an automated player’s behavior. Hence, any performance difference between the
two is due to the enhanced reasoning capabilities; not the capability of one
performing actions that the other one couldn’t. For planning from scratch, HTN
planning has been shown to be capable of expressing strategies that cannot be
expressed in STRIPS planning [4]. But in this work, plans are not generated
from scratch (our systems don’t even assume STRIPS operators); instead, plans
are retrieved from a case library so those expressiveness results do not apply
here.

It is expected that LUiGi-H will require increased computation time due to
higher level expectations. We test the performance of both LUiGi-H and LUiGi
on the real-time strategy game: Starcraft. Hence, both systems experience a dis-
advantage if the computation time during reasoning (i.e. planning, discrepancy
detection, goal-selection, etc) is too large. Increased computation time manifests
as a delay in the issuing of macro-level strategy (i.e. changing the current plan)
to the game-interfacing component of the agent. This will become more clear
in Section 5 where we discuss the architecture of both agents. In our results
LUiGi-H outperforms LUiGi demonstrating that it can take advantage of the
case-based hierarchical knowledge without incurring periods of inactivity from
running time overhead.

2 Example

We present an example in the real-time strategy game Starcraft. In Starcraft,
players control armies of units to combat and defeat an opponent. In our example
and experiments we concentrate on macro-level decisions; low-level management
is performed by the underlying default game controller.

Figure 1 shows a hierarchical plan or h-plan used by LUiGi-H. This plan,
and every plan in the case base, is composed of the primitive actions found in
Table 1 at the lowest level of the h-plan (we refer to the lowest level as the 0-level
plan). This h-plan achieves the Attack Ground Surround task. For visualization
purposes we divide the h-plan into two bubbles A and B. Bubble A achieves the
two subtasks Attack Ground Direct (these are the two overlapping boxes) while
Bubble B achieves the Attack Units Direct task. For the sake of simplicity we
don’t show the actual machine-understandable representation of the tasks. In
the representation the two Attack Ground Direct tasks would only differ on the
parameters (one is attacking region A while the other one is attacking region B
as illustrated in Figure 2).

Bubble A contains the two Attack Ground Direct tasks, each of which is
composed of the actions: Produce Units, Move Units, and Attack Units. Bubble
B contains the task Attack Units Direct which is composed of the actions: Move
Units, Attack Units. This h-plan generates an Attack Ground Surround plan for
each region surrounding the enemy base. In the example on the map shown in
Figure 2, this happens to be two regions adjacent to the enemy base, therefore
the plan contains two Attack Ground Direct that are executed concurrently.



3

Fig. 1: High Level Plan: AttackGroundSur-
round Fig. 2: AttackGroundSurround on map Vol-

canis

Once the execution of both Attack Ground Direct tasks are completed, the
agent’s units will be in regions adjacent to the enemy base. At this point, the
next task Attack Units Direct is executed, which moves the units into the enemy
base and attacks. Reasoning using a more abstract plan such as this one requires
representing the notion of surrounding. This is only possible because of LUiGi-
H’s use of more complex expectations. Specifically, the expectation labeled E1-0
in Figure 1 represents the condition that all regions that were attacked are under
control (Table 2). In the ontology, the explicit notion of Region Surrounded can
be inferred for a region if all of that region’s adjacent regions are controlled by
the agent (represented by Control Region). In this example there are only two
Attack Ground Direct because there are only two adjacent regions to the enemy
base). In Figure 1 each bubble contains the expectation for its corresponding
task. For the primitive tasks or actions, the expectations are as shown in Table
1. For the expectations of tasks at higher levels in the plan, such as for Attack
Ground Direct, the expectation indicates that our units are successfully located
in regions adjacent to the enemy base. Only after this expectation is met, then
the agent proceeds to Attack Units Direct task (denoted by B in Figure 1).

Action Pre-Expectations Post-Expectations

Produce Units 1. Control Home Base 1. Our player has the given units
requested

Move Units 1. Control Home Base 1. Our units are within a given ra-
dius of the destination

Attack Units None 1. We control the given region

Attack Worker Units None 1. We control the given region

Table 1: Primitive Actions and Corresponding Expectations



4

Expectation Description

E1-0 Control all of the regions from Attack Ground Direct

E1-1 Control region from Attack Direct

E2-0 Control same region as in E1-1

Table 2: High Level Expectations used in Attack Ground Surround

3 Goal Driven Autonomy

Goal-driven autonomy’s goal reasoning mechanism consists of a four step cycle.
First a goal is selected by the Goal Manager and sent to planner. While the plan
is being executed, the Discrepancy Detector step is checking to see if the plan’s
expectations are met before and after actions are being executed. If a discrepancy
is found, the discrepancy is sent to the Explanation Generator and the system
comes up with an explanation, which is then sent to the Goal Formulator to
create new goal(s) and finally those goals are sent to the Goal Manager and the
cycle is repeated again. These four steps are shown in LUiGi-H in Figure 3.

Discrepancy detection plays an important role as the GDA cycle will not
choose a new goal unless an anomaly occurs, and the first part of the process
is identifying such an anomaly. In the domain of Starcraft, the state is very
large (on the order of thousands of atoms). The baseline LUiGi system solved
the problem of mapping expectations to primitive plan action such as Produce
Units, Move Units, and Attack Units by using an ontology. LUiGi uses the
ontology to represent the current state of the world as the agent percieves it (i.e.
taking into account fog of war: partial observability of the state). This is done
to restrict the size of the ontology while still maintaining the ability to infer
much needed concept which serve as higher level expectations. The ontology is
discussed in more detail in Section 5.3.

The Discrepancy Detector reasons over the ontology comparing inferred facts
to the expectations of the current plans’ actions to determine if there is a dis-
crepancy between the current state and the expected state. The Explanation
Generator provides an explanation for the discrepancy. The Goal Formulator
generates a new goal based on the explanation. The Goal Manager manages
which goals will be achieved next.

The crucial difference between LUiGi and LUiGi-H is that LUiGi performs
the GDA cycle on level-0 plans. That, is on the primitive tasks or actions such
as Produce Units and their expectations (e.g. Have Units). In contrast, LUiGi-
H reasons on expectations at all echelons of the hieararchy. The next sections
describe details of the inner workings of LUiGi-H.

4 Representation Formalism and Semantics of h-plans

LUiGi-H maintains a library of h-plans. h-plans have a hierarchical structure
akin to plans used in hierarchical task network (HTN) planning but, unlike
plans in HTN planning, h-plans are annotated with their expectations. In HTN



5

planning only the concrete plan or level-0 plan (i.e. the plan at the bottom of the
hierarchy) has expectations as determined by the actions’ effects. This tradition
is maintained by existing goal-driven autonomy systems that use HTN planners.
For example, [5] uses the actions’ semantics of the level-0 plans to check if the
plans’ expectations are met but does not check the upper layers. Our system
LUiGi-H is the first goal-driven autonomy system to combine expectations of
higher echelons of a hierarchical plan and case-based reasoning.

These h-plans encode the strategies that LUiGi-H pursues (e.g. the one shown
in Figure 1). Each case contains one such an h-plan. We don’t assume the general
knowledge needed to generate HTN plans from scratch. Instead, we assume a
CBR solution, whereby these h-plans have been captured in the case library. For
example, they are provided by an expert as episodic knowledge. This raises the
question about how we ensure the semantics of the plans are met; HTN planners
such as SHOP guarantee that HTN plans correctly solve the planning problems
but require the knowledge engineer to provide the domain knowledge indicating
how and when to decompose tasks into subtasks (i.e. methods). In addition, the
STRIPS operators must be provided. In our work, we assume that the semantics
of the plans are provided in the form of expectations for each of the levels in the
h-plan and an ontology Ω that is used to define these expectations.

We define a task to be a symbolic description of an activity that needs to
be performed. We define an action or primitive task to be a code call to some
external procedure. This enable us to implement actions such as “scorched earth
retreat U to Y ” (telling unit U to retreat to location Y while destroying any
bridge or road along the way) and the code call is implemented by a complex
procedure that achieves this action while encoding possible situations that might
occur without worrying about having to declare each action’s expectations as
(preconditions, effects) pairs. This flexibility is needed for constructing complex
agents (e.g. an Starcraft automated player) where a software library is provided
with such code calls but it would be time costly and perhaps unfeasible to declare
each procedure in such library as an STRIPS operator. We define a compound
task as a task that it is not defined through a code call (e.g. compound tasks
are decomposed into other tasks, each of which can be compound or primitive).

Formally, an h-plan is defined recursively as follows.
Base case. A level-0 plan π0 consisting of a sequence of primitive tasks. Each

primitive task in the level-0 plan is annotated with an expectation. Example: In
Figure 1 the level-0 plan consists of 8 actions: the produce, move, attack sequence
is repeated twice (but with different parameters; parameters are not shown for
simplicity) followed by the move and attack actions. Each task (shown as a
rectangle) has an expectation (shown as an ellipse).

The base case ensures that the bottom level of the hiearchy consists exclu-
sevely of primitive tasks and hence can be executed.

Recursive case Given a plan πk of level k (with k ≥ 0), a level−k + 1 plan,
πk+1, for pik consists of a sequence πk+1 of tasks such for each task t in πk+1

either:
(d1) t is a task in πk, or



6

(d2) t is decomposed into a subsequence t1...tm of tasks in πk. Example: In
Figure 1, the task Attack Ground Direct is decomposed into the produce, move,
attack primitive tasks.

Conditions (d1) and (d2) ensure that each task t in level k + 1 either also
occurs in level k or it is decomposed into subtasks at level k.

Finally, we require that each task t in the πk+1 plan to be annotated with
an expectation et such that:

(e1) if t meets condition (d1) above, then t has the same expectation et for
both πk and πk+1.

(e2) if t meets condition (d2) above, then t is annotated with an expectation
et such that et |=Ω em, where em is the expectation for tm. That is, em can be
derived from et using the ontology Ω or loosely speaking, et is a more general
condition that em. Example: The condition control region can be derived from
condition E1-0 (Table 2).

An h-plan is a collection π0, π1, ..., πn such that for all k with (n−1) ≥ k ≥ 1,
then πk+1 is a plan of level (k+1) for πk. Example: the plan in Figure 1 consists of
3 levels. The level-0 plan consists of 8 primitive tasks starting with produce units.
The level-1 plan consists of 3 coumpound tasks: Attack ground direct (twice) and
attack unit direct. The level-2 plan consists of a single compound task: Attack
Ground surround.

A case library consists of a collection hp1, hp2, ..., hpm where each hpk is an
h-plan.

GDA with h-plans. Because LUiGi-H uses h-plans the GDA cycle is ad-
justed as follows: discrepancies might occur at any level of the hierarchy of the
h-plan. Because each task t in the h-plan has an expectation et, then the discrep-
ancy might occur at any level-k plan. Thus the cycle might result in a new task
at any level k. This in contrast to systems like HTNbots-GDA where discrepan-
cies can only occur at level-0 plans. When a discrepancy occurs for a task t in
a level k-plan, an explanation is generated for that discrepancy, and a new goal
is generated. This new goal repairs the plan by suggesting a new task repairing
t while the rest of the k-level plan remains the same. At the top level, say n,
this could mean retrieving a different h-plan. This provides flexibility to do local
repairs (e.g. if unit is destroyed, send a replacement unit) or changing the h-plan
completely.

Execution of level-0 plans The execution procedure works as follows:
each action ti in the level-0 plan is considered for execution in the order that it
appears in the plan. Before executing an action the system checks if the action
requires resources from previous actions. If so it will only execute that action if
those previous actions’ execution is completed. For example, for the level-0 plan
in Figure 1, the plan will begin executing Produce Units but not Move Units
since they share the same resource: the units that the former produce are used
by the later. It will start the second Produce Units action if it has more than one
fabric. Otherwise, it will need to wait until the first Produce Units is completed.
The other levels of the h-plan are taken into account when executing the level-0
plan. For example, the action Move Units in the portion B of the plan will not be



7

executed until all actions in the portion A are completed because the compound
task Attack Units Direct occurs after the compound task Attack Ground Direct.
As a result of this simple mechanism, some actions will be executed in parallel
while still committing to the total order of the h-plan.

5 A Hierarchical Case-based GDA System

Our LUiGi-H system combines CBR episodic and hierarchical task network
(HTN) representation to attain a GDA system that reasons with expectations,
discrepancies and explanations at varied level of abstraction.

Figure 3 shows an overview of LUiGi-H. It consists of two main components:
the Controller and the Bot. The Controller is the main component of the system
and it is responsible for performing the GDA cycle (shown under the box ”GDA
Cycle”), planning, and reasoning with the ontology.

The Bot is in charge of executing and monitoring the agent’s actions. In
our experiments LUiGi-H plays Starcraft games. Communication between the
Controller and the Bot are made with TCP/IP sockets and file share systems.

Controller 

GDA Cycle 

Goal 
Manager 

Discrepancy 
Detector 

Explanation 
Generator 

Goal 
Formulator 

Planner 

Ontology 

Starcraft 

Bot 

Plan 
Step 
Executor 

Plan 
Step 
Listener 

Game 
State 
Dumper 

File System 

Pellet 
Reasoner Ontology 

TCP/IP Socket 

Case 
Base 

Planning 
Server 

Fig. 3: LUiGi-H Overview



8

5.1 Basic Overview of LUiGi-H’s Components

Here we give a brief overview of each component before going into more detail
for the Planner in Section 5.2 and the Ontology in Section 5.3.

The Planner. As explained in Section 4, an expert-authored case base is
composed of h-plans that encode high-level strategies. Actions are parametrized,
for example, the action Produce Units takes a list of pairs of the form (unit-type,
count) and the bot will begin to produce that number of units of each type given.
All expectations for tasks in the current h-plan are inferred using the ontology
Ω, which include all facts in the current state and new facts inferred from the
rules in the ontology.

Ontology: The ontology represents the current state of the game at any given
point in time. It is refreshed every n frames of the Starcraft match, and con-
tains facts such as regions, unit data (health, location, etc), player data (scores,
resources, etc). The state model is represented as a semantic web ontology.

Bot: Component that directly interfaces with Starcraft to issue game com-
mands. This component dumps game state data that is loaded into the ontology
and listens for actions from the Goal Reasoner.

Game State Dumper: Component within the Starcraft Plan Executor that
outputs all of the current game state data to a file which is then used to populate
the ontology of the State Model of the controller.

Plan Action Listener: The bot listens for actions from the controller, and as
soon as it receives an action it begins executing it independently of other actions.
It is the job of the controller to ensure the correct actions are sent to the bot.
The bot only has knowledge of how to execute individual actions.

5.2 Planner

While actions in a level-0 plan are the most basic tasks in the context of the
h-plans, these actions encode complex behavior in the context of the Starcraft
games. For example, Produce Units takes multiple in-game commands to create
the desired number and type of units (i.e. 5 Terran Marines). These include
commands to to harvest the necessary resources, build required buildings, and
issue commands to build each unit. Each action is parametrized to take different
arguments. This allows general actions to be used in different situations. For
example, Produce Units is used to produce any kind of units, while Move Units
is used to move units to any region.

5.3 Ontology

One of the main benefits of using an ontology with GDA is the ability to provide
formal definitions of the different elements of a GDA system. The ontology uses
facts as its representation of atoms. Facts are 〈subject, predicate, object〉 triples.
A fact can be an initial fact (e.g. 〈unit5, hasPosition, (5,6)〉 which is directly
observable) or an inferred fact (e.g. 〈player1, hasPresenceIn, region3〉). We use
an ontology to represent high-level concepts such as controlling a region. By



9

Name Description Actions

Attack
Ground
Direct

Produce ground units and at-
tack the enemy base directly

Produce Units (marine, x) Move
Units (enemy base) Attack
Units (enemy base)

Attack Air
Direct

Produce air units and attack
the enemy base directly

Produce Units (marine, x) Move
Units (enemy base) Attack
Units (enemy base)

Attack
Both
Direct

Produce air units and attack
the enemy base directly

Produce Units (marine, x) Pro-
duce Units (wraith, x) Move
Units (enemy base) Attack
Units (enemy base)

Attack
Ground
Surround

Calculates the location of
each region surrounding the
enemy base, send units to that
location, and then attacks the
enemy

Attack Ground Direct (xR)
—Produce Units
—Move Units
—Attack Units
Attack Ground Direct (enemy base)

Attack Air
Surround

Calculates the location of
each region surrounding the
enemy base, send units to that
location, and then attacks the
enemy

Attack Air Direct (xR)
—Produce Units
—Move Units
—Attack Units
Attack Ground Direct (enemy base)

Rush
Defend
Region

Take all units from a previ-
ous plan and defend the home
base

Acquire Units (unit ids list) Move Units
(home base) Attack Region (enemy
base)

Attack
And Dis-
tract

Attack directly with ground
units while at the same time
attacking from behind with
air units which focus specifi-
cally on killing worker units

Attack Air Sneak Attack Ground
Direct

Attack Air
Sneak

Fly units directly to near-
est corner of the map in re-
gards to the enemy base be-
fore sending to enemy base

Produce Units (wraith, x) Move
Units (nearest corner) Move
Units (enemy base) Attack
Worker Units (enemy base)

Table 3: Plans

using a semantic web ontology, that abides by the open-world assumption, it is
technically not possible to infer that a region is controlled by a player, unless full
knowledge of the game is available. Starcraft is one such domain that intuitively
seems natural to abide by the open world assumption because of the fog of
war. That is, a player can vie only the portion of the map where it has units



10

deployed. As a result, we can assume local closed world for the areas that are
within visual range of our own units. For example, if a region is under visibility
of our units and there are no enemy units in that region, we can infer the region
is not contested, and therefore we can label the region as controlled. Similarly,
if none of our units are in a region, then we can infer the label of unknown for
that region.

The following are formal definitions for a GDA agent using a semantic web
ontology:

– State S: collection of facts
– Inferred State Si: S ∪ { facts inferred from reasoning over the state with

the ontology }
– Goal g: a desired fact g ∈ Si
– Expectation x: one or more facts contained within the Si associated with

some action. We distinguish between primitive expectations, xp, and com-
pound expectations, xc. xp is a primitive expectation if xp ∈ S and xc is a
compound expectation if xc ∈ (Si − S). (Si − S) denotes the set difference
of Si and S, which is the collection of facts that are strictly inferred.

– Discrepancy d: Given an inferred state Si and an expectation, x, a dis-
crepancy d is defined as:

1. d = x if x 6∈ Si, or
2. d = {x} ∪ Si if {x} ∪ Si is inconsistent with the ontology

– Explanation e: Explanations are directly linked to an expectation. For
primitive expectations, such as xp = (player1, hasUnit, unit5) the expla-
nation is simply the negation of the expectation when that expectation is
not met: ¬xp. For compound expectations, xc (e.g. expectations that are
the consequences of rules or facts that are inferred from description logic
axioms), the explanation is the trace of the facts that lead up to the relevant
rules and/or axioms that cause the inconsistency.

5.4 Discussion

LUiGi-H is composed of two major components, the controller and the bot. The
controller handles the goal reasoning processes while the bot interfaces with the
game directly. The controller and bot operate separately from each other, and
communicate via a socket and file system. There are two methods of data transfer
between the controller and the bot. First, every n frames the bot dumps all visible
gamestate data to the controller via a file (visible refers to the knowledge that
a human player would have access to; the bot does not have global knowledge).
The controller then uses this data to populate a semantic web ontology, in which
to reason about the game to infer more abstract conclusions (these are used
in discrepancy detection). The other method of data transfer is the controller
sending messages to the bot which happens via a socket. Both the bot and
controller run as completely different processes, use their own memory, and are
written in different languages (bot is c++ and controller is java).



11

The controller’s perspective of the game is different than the bot’s in a few
ways. The controller’s game state data is only updated when the Pellet reasoner
finishes. The Pellet reasoner is one of a few easily available reasoners for semantic
web ontologies. However, the controller’s game state data includes more abstract
notions such as “I control region x right now”. The controller also knows all
current actions being executed. As a result, the controller has a overall view of
the match but at the loss of some minute details, such as the exact movements
of every unit at every frame of the game. This level of detailed information
is perceived by the bot but at cost of only having a narrow, instant view of
the game. The bot receives actions from the controller, it only receives a single
action per plan at a time (when that action finishes, successfully or not, the
bot requests the next action of the plan). The bot can execute multiple actions
together independently, without knowing which action is going to come next. If
the controller decides an action should be aborted while the bot is executing it,
it sends a special message to the bot instructing it to stop executing that action.

6 Empirical Evaluation

In order to demonstrate the benefit of h-plans, we ran LUiGi-H against the
baseline LUiGi. Matches occurred on three different maps: Heartbreak Ridge,
Challenger, and Volcanis. Heartbreak Ridge is one of the most commonly used
maps for Starcraft (it is one of the maps used in AIIDE’s annual tournament),
while Challenger and Volcanis are common well-known maps. Data was collected
every second, and the Starcraft match was run at approximately 20 frames per
second (BWAPI function call of setLocalSpeed(20)). The performance metrics
are:

– kill score. Starcraft assigns a weight to each type of unit, representing the
resources needed to create it. For example, a marine is assigned 100 points
whereas a siege tank is assigned 700 points. The kill score is the difference
between the weighted summation of units that LUiGi-H killed minus the
weighted summation of units that LUiGi killed.

– razing score. Starcraft assigns a weight to each type of structure, repre-
senting the resources needed to create it. For example, a refinery1 is assigned
150 points whereas a factory2 is assigned 600 points. The razing score is the
difference between the weighted summation of structures that LUiGi-H de-
stroyed minus the weighted summation of structures that LUiGi destroyed.

– total score. The total score is the summation of the kill score plus the
razing score for LUiGi-H minus the summation of the kill score plus the
razing score for LUiGi.

1 A refinery is a building that allows to harvest gas, a resource needed to produce
certain kinds of units. For instance, 100 gas units are needed to produce a single
siege tank.

2 A factory is building that allows the production of certain kinds of units such as
siege tanks provided that the required resources have been harvested.



12

In addition to these performance metrics, the unit score is computed. The
unit score is the difference between the total number of units that LUiGi-H
created minus the total number of units that LUiGi created. This is used to
assess if one opponent had an advantage because it created more units. This
provides a check to ensure that a match wasn’t won because one agent produced
more units than another.

We show our results in Figure 4 below.3

0 200 400 600 800 1000 1200 1400
Seconds

3000

2000

1000

0

1000

2000

3000

4000

5000

S
co

re

Cumulative Score (Kill, Unit, Razing) vs. Time

Fig. 4: LUiGi-H vs. LUiGi on Heartbreak Ridge

The red dashed line shows the kill score, the blue dot-dashed line shows the
unit score and the green dotted line is the razing score. The total score, which is
the sum of the kill score and razing score is shown as the unbroken cyan line. All
lines show the difference in cumulative score of LUiGi-H vs. LUiGi. A positive
value indicates LUiGi-H has a higher score than LUiGi.

From Figure 4 we see that LUiGi-H ended with a higher total score than
LUiGi, starting around the 400 second mark. In Figure 4, the difference in the
blue dot-dashed line (unit score) shows that in this match the LUiGi system
produced far many more units than the LUiGi-H system. Despite producing
significantly fewer units LUiGi-H system outperformed LUiGi as can be seen by
the total score line (cyan unbroken). LUiGi-H scored much higher on the kill
score, but less on the razing score. A qualitative analysis revealed that LUiGi
had slightly more units end game, shown in the graph by the much higher unit
score (blue dot dashed), which caused its razing score to be higher than LUiGi-
H. We expect that as the unit score approaches zero, LUiGi-H will exhibit higher
kill and especially razing scores. LUiGi-H won both this match and the match
shown in Figure 5, on the map Challenger.

Figure 5 shows LUiGi-H vs. LUiGi on the Challenger map. LUiGi-H produces
slightly more units in the beginning but towards the end falls behind LUiGi. This

3 We plot results for a single run because difference in scores between different runs
were small.



13

Fig. 5: LUiGi-H vs. LUiGi on Challenger

graph shows a fairer matchup in unit strength. Both the razing score and kill
score show LUiGi-H outperforming the ablation: LUiGi.

LUiGi-H used h-plans with multiple levels of expectations which allowed
a more coordinated effort of the primitive actions of a plan. In the situation
where LUiGi-H and LUiGi were executing plans composed of the same primi-
tive actions, in the event of a discrepancy, LUiGi-H would trigger discrepancy
detection that would reconsider the broader strategy (the entire h-plan of which
the primitive actions were composed from) while LUiGi would only change plans
related to the single level-0 plan that was affected by the discrepancy. This allows
LUiGi-H more control in executing high level strategies, such as that depicted
in the example in Figure 1.

A non-trivial task in running this experiment was ensuring that each bot
produced roughly the equivalent strength of units (shown in the graph as unit
score). While we were unable to meet this ideal in our experiments precisely,
including the unit score in the graphs helps identify the chances that a win was
more likely because of sheer strength vs. strategy.

We leave out the result from Volcanis due to a loss from a delay due to
the reasoning over the ontology. The average time taken by each agent to reason
over the ontology is about 1-2 seconds. This is the crucial part of the discrepancy
detection step of the GDA cycle. A delay in the reasoning means that discrepancy
detection will be delayed. During the match on Volcanis, at the first attack by
LUiGi on LUiGi-H the reasoning hangs and causes discrepancy detection to
respond late and fail to change goals before a building is destroyed. This causes
LUiGi-H a big setback in the beginning of the match and results in a loss of the
game. This issue is due to the fact that at any given point in time there are a few
hundred atoms in the state (and thus ontology), with greater numbers of atoms
during attacks (because the agent now has all the atoms of its enemy units
which it can now see). Optimizing the ontology for both reasoning and state
space is one possibility for future improvement: an improvement in reasoning



14

time would increase the rate of discrepancy detection. This also demonstrates
that even though the GDA cycle is being performed every few seconds while the
bot is issuing a few hundred actions per minute, GDA is still beneficial due to
the ability to generate and reason about high level strategies.

7 Related Work

To the best of our knowledge, LUiGi-H is the first agent to use episodic hier-
archical plan representation in the context of goal-driven autonomy where the
agent reasons with GDA elements at different levels of abstraction. Nevertheless
there are a number of related works which we will now discuss.

Other GDA systems include LUiGi [1], GRL [2] and EISBot [3]. As with all
GDA systems, their main motivation is for the agents to autonomously react to
unexpected situations in the environment. From these, the most closely related
is LUiGi as it uses ontologies to infer the expectations. However, none of these
GDA systems, including LUiGi, uses h-plan representations.

The most closely related works are the one from [5] and [6–8], which describe
the HTNbots and the ARTUE system respectively. Both HTNBots and ARTUE
uses the HTN planner SHOP [9]. SHOP is used because it can generate plans
using the provided HTN domain knowledge. This HTN domain knowledge de-
scribes how and when to decompose tasks into subtasks. Once the HTN plan is
generated, HTNBots and ARTUE discard the k-level plans (k ≥ 1) and focus
their GDA process on the level-0 plans (i.e. the sequence of actions or primi-
tive tasks). That is expectations, discrepancies, explanations, all reason at the
level of the actions. There are two main difference versus our work. First, in our
work we don’t require HTN planning knowledge. Instead, LUiGi-H uses episodic
knowledge in the form of HTN plans. Second, LUiGi-H reasons about the expec-
tations, discrepancies and explanations at all levels of the HTN plan; not just at
the level 0. As our empirical evaluation demonstrates, reasoning about all levels
of the HTN plans results in better performance of the GDA process compared
to a GDA process that reasons only on the level-0 plans.

Other works have proposed combining HTN plan representations and CBR.
Included in this group are the PRIAR [10] Caplan/CbC system [11], Process
manufacturing case-based HTN planners [12] and the SiN system [13]. None of
these systems perform GDA. They use CBR as a meta-level search control to
adapt HTN plans as in PRIAR or to use episodic knowledge to enhance partial
HTN planning knowledge as in SiN.

8 Conclusion

In this paper, we presented LUiGi-H, a GDA agent that combine CBR episodic
knowledge, h-plan knowledge and ontological information enabling it to reason
about the plans, expectations, discrepancies, explanations and new goals at dif-
ferent levels of abstraction.



15

We compared LUiGi-H against an ablated version, LUiGi. Both agents use
the same case base for goal formulation and have access to the same level-0 plans.
In our experiments, LUiGi-H outperforms LUiGi demonstrating the advantage
of using episodic hierarchical plan representations over non-hierarchical ones
for GDA tasks. We noted one match where LUiGi-H lost because of a delay in
ontology reasoning time that caused discrepancy detection to respond too slowly
to an attack on LUiGi-H’s base.

For future work, we will explore using case-based learning techniques to
acquire the h-plans automatically from previous problem-solving experiences.
Specifically, we envision a situation in which LUiGi-H starts with no h-plans
and learns these plans from multiple starcraft matches against different oppo-
nents. This will in turn allows us to test LUiGi-H versus the highly optimized
(and hard-coded) entries in the Starcraft competition.

References

1. D. Dannenhauer and H. Muñoz-Avila. LUIGi: A Goal-Driven Autonomy Agent
Reasoning with Ontologies. In Advances in Cognitive Systems (ACS-13), 2013.

2. Ulit Jaidee and Héctor Muñoz-Avila. Modeling Unit Classes as Agents in Real-
Time Strategy Games. In Ninth Artificial Intelligence and Interactive Digital En-
tertainment Conference, 2013.

3. Ben Weber. Integrating Learning in a Multi-Scale Agent. PhD thesis, University
of California, Santa Cruz, June 2012.

4. Kutluhan Erol, James Hendler, and Dana S Nau. Htn planning: Complexity and
expressivity. In AAAI, volume 94, pages 1123–1128, 1994.

5. Héctor Muñoz-Avila, David W Aha, Ulit Jaidee, Matthew Klenk, and Matthew
Molineaux. Applying Goal Driven Autonomy to a Team Shooter Game. In FLAIRS
Conference, 2010.

6. Matthew Molineaux, Matthew Klenk, and David W Aha. Goal-Driven Autonomy
in a Navy Strategy Simulation. In AAAI, 2010.

7. M. Molineaux and D.W. Aha. Learning Models for Predicting Surprising Events.
In Advances in Cognitive Systems Workshop on Goal Reasoning, 2013.

8. Vikas Shivashankar, UMD EDU, Ron Alford, Ugur Kuter, and Dana Nau. Hier-
archical goal networks and goal-driven autonomy: Going where ai planning meets
goal reasoning. In Goal Reasoning: Papers from the ACS Workshop, page 95, 2013.

9. Dana Nau, Yue Cao, Amnon Lotem, and Héctor Muñoz-Avila. SHOP: Simple hier-
archical ordered planner. In Proceedings of the 16th international joint conference
on Artificial intelligence-Volume 2, pages 968–973. Morgan Kaufmann Publishers
Inc., 1999.

10. Subbarao Kambhampati and James A Hendler. A validation-structure-based the-
ory of plan modification and reuse. Artificial Intelligence, 55(2):193–258, 1992.

11. Héctor Muñoz, Jürgen Paulokat, and Stefan Wess. Controlling a nonlinear hierar-
chical planner using case replay. Springer, 1995.

12. H-C Chang, Lijun Dong, FX Liu, and Wen F Lu. Indexing and retrieval in ma-
chining process planning using case-based reasoning. Artificial Intelligence in En-
gineering, 14(1):1–13, 2000.

13. Héctor Muñoz-Avila, David W Aha, Dana S Nau, Rosina Weber, Len Breslow,
and Fusun Yaman. Sin: Integrating case-based reasoning with task decomposition.
Technical report, DTIC Document, 2001.


