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ABSTRACT
We investigate the problem of evaluating the performance
of text processing algorithms on inputs that contain errors
as a result of optical character recognition. A new hierar-
chical paradigm is proposed based on approximate string
matching, allowing each stage in the processing pipeline to
be tested, the error effects analyzed, and possible solutions
suggested.

Categories and Subject Descriptors
I.7.5 [Document and Text Processing]: Document Cap-
ture—document analysis

General Terms
algorithms, measurement, performance

Keywords
performance evaluation, optical character recognition, sen-
tence boundary detection, tokenization, part-of-speech tag-
ging

1. INTRODUCTION
Increasingly, researchers are acknowledging that many real-

world sources are “noisy” and require attention to develop-
ing techniques that are robust in the presence of such noise.
The outputs from optical character recognition (OCR) and
automatic speech recognition (ASR) systems, for example,
typically contain various degrees of errors, and even purely
electronic (“born digital”) media, such as email, are not
error-free. To exploit these documents, we need to develop
techniques to deal with noise, in addition to working on core
text processing issues. Whether we can successfully handle
noise will greatly influence the ultimate utility of the infor-
mation extracted from such documents.
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A number of researchers have begun studying problems
relating to information extraction from noisy sources. To
date, this work has focused predominately on errors that
arise during speech recognition. For example, Gotoh and
Renals propose a finite state modeling approach to extract
sentence boundary information from text and audio sources,
using both n-gram and pause duration information [5]. They
found that precision and recall of over 70% could be achieved
by combining both kinds of features. Palmer and Ostendorf
describe an approach for improving named entity extraction
by explicitly modeling speech recognition errors through the
use of statistics annotated with confidence scores [13]. Hori
and Furui summarize broadcast news speech by extracting
words from automatic transcripts using a word significance
measure, a confidence score, linguistic likelihood, and a word
concatenation probability [7].

There has been much less work, however, in the case of
noise induced by optical character recognition. Early papers
by Taghva, Borsack, and Condit show that moderate error
rates have little impact on the effectiveness of traditional
information retrieval measures [18, 19], but this conclusion
seems specific to certain assumptions about the IR model
(“bag of words”), the OCR error rate (not too low), and the
length of the documents (not too short). Miller, et al. study
the performance of named entity extraction under a variety
of scenarios involving both ASR and OCR output [11], al-
though speech is their primary interest. They found that
by training their system on both clean and noisy input ma-
terial, performance degraded linearly as a function of word
error rates. They also note in their paper: “To our knowl-
edge, no other information extraction technology has been
applied to OCR material” (pg. 322).

A recent paper by Jing, Lopresti, and Shih studied the
problem of summarizing textual documents that had under-
gone optical character recognition and hence suffered from
typical OCR errors [8]. In that study, the focus was on an-
alyzing how the quality of summaries was affected by the
level of noise in the input document, and how each stage in
summarization was impacted by the noise. Based on this
analysis, the authors suggested possible ways of improving
the performance of automatic summarization systems for
noisy documents. From the standpoint of performance eval-
uation, however, this work did not provide rigorous criteria,
instead employing a variety of indirect measures: for exam-
ple, comparing the total number of sentences returned by
sentence boundary detection for clean and noisy versions of
the same input text, or counting the number of incomplete



parse trees generated by a part-of-speech tagger.
Performance evaluation is a challenging issue that is key to

developing robust text processing algorithms. In this paper,
we focus directly on the former as a subject worthy of study
in a context independent of (and hence not subservient to)
the latter.

We begin in Section 2 by describing the typical stages in
a text processing system. Rather than assume a specific fi-
nal application (e.g., summarization or named-entity extrac-
tion), we restrict our focus to procedures that are common to
a variety of problem areas. We then propose in Section 3 an
evaluation paradigm based on the hierarchical application
of approximate string matching techniques using dynamic
programming. This flexible yet mathematically rigorous ap-
proach allows us both to quantify the performance of a given
text processing stage as well as to identify explicitly the er-
rors it has made. Section 4 presents the results of a pilot
study we performed in which we selected a small set of doc-
uments and created noisy versions of them. These were then
OCR’ed and piped through procedures for performing sen-
tence boundary detection, tokenization, and part-of-speech
tagging. The experimental results show that these mod-
ules suffer significant degradation as the noise level in the
document increases, but, more importantly, that the perfor-
mance evaluation paradigm we are developing can provide
useful assistance in such analyses. We conclude with a pro-
posal for future work.

2. STAGES IN TEXT PROCESSING
In this section, we describe in general terms the stages

that are common to many text processing systems, and
then list the specific packages we have tested in a prelimi-
nary study of our paradigm for performance evaluation. The
stages, in order, are typically:

1. Optical character recognition.

2. Sentence boundary detection.

3. Tokenization.

4. Part-of-speech tagging.

In selecting implementations of the above procedures, we
elected to employ freely available open source software rather
than proprietary, commercial solutions.1 While the pro-
grams we tested are not necessarily state-of-the-art, they
offer other significant benefits. From the standpoint of eval-
uation, all we require is behavior that is representative, not
“best-in-class.” Our methodology should apply equally well
to other approaches to solving the same problems, no matter
what algorithms are used.

2.1 Optical Character Recognition
The first stage of the pipeline is optical character recogni-

tion, the conversion of the scanned input image from bitmap
format to encoded text. Optical character recognition per-
forms quite well on clean inputs in a known font. It rapidly
degrades in the case of degraded documents, complex lay-
outs, and/or unknown fonts. The input to OCR is an image

1In the spirit of this same philosophy, we plan to make our
code for performance evaluation available via open source
as well once it has been thoroughly debugged and vetted.

in bitmap format, and its output is the recognized text, pos-
sibly including errors, in an encoded format (e.g., ASCII). In
certain situations, OCR will introduce many errors involving
punctuation characters, which has an impact on later-stage
processing.

For our OCR stage, we selected the open source gocr pack-
age [17]. While gocr is not competitive with commercial
systems in terms of performance, it is freely available and
easily integrated into a batch mode text processing pipeline.
Since we are presenting it with relatively simple text layouts,
having to deal with complex inputs is not an issue. The
performance of gocr on the inputs we tested is likely to be
similar to the performance of a better-quality OCR package
on noisier inputs of the same type. Hence, the conclusions
we draw here almost certainly apply to other OCR systems,
provided the input is sufficiently noisy.

2.2 Sentence Boundary Detection
Procedures for sentence boundary detection use a variety

of syntactic and perhaps semantic cues in order to break
the input text into sentence-sized units, one per line (i.e.,
each unit is terminated by a standard end-of-line delimiter
such as the Unix newline character). The sentence bound-
ary detector we used in our test is the MXTERMINATOR
package by Reynar and Ratnaparkhi [16].

2.3 Tokenization
Tokenization takes the input text, which has been divided

into one sentence per line, and breaks it into individual to-
kens which are delimited by white space. These largely cor-
respond to word-like units or isolated punctuation symbols.
In our studies, we used the Penn Treebank tokenizer [10]. As
noted in the documentation for that system, its operation
can be summarized as:

• most punctuation is split from adjoining words,

• double quotes are changed to doubled single forward-
and backward-quotes,

• verb contractions and the Anglo-Saxon genitive of nouns
are split into their component morphemes, and each
morpheme is tagged separately.

2.4 Part-of-Speech Tagging
Part-of-speech tagging takes the tokenized text as input

and tags each token as per its part of speech. We used
Ratnaparkhi’s part-of-speech tagger MXPOST [15], which
produced a total of 42 different part-of-speech tags for our
test inputs.

3. PERFORMANCE EVALUATION
As noted previously, performance evaluation for text pro-

cessing of noisy inputs presents some serious challenges. Our
goal in pursuing this work is to develop such techniques and
demonstrate their utility. For the approach we are propos-
ing, one body of past work is particularly relevant: that is,
the use of approximate string matching to align two linear
streams of text, one representing OCR results and the other
representing the ground-truth [3, 4].

This optimization problem can be solved using a well-
known dynamic programming algorithm [12, 20]. Let S =
s1s2 . . . sm be the source document (the ground-truth), T =
t1t2 . . . tn be the target document (the OCR results), and



define dist1i,j to be the distance between the first i symbols
of S and the first j symbols of T . The initial conditions are:

dist10,0 = 0
dist1i,0 = dist1i−1,0 + c1 del(si)
dist10,j = dist10,j−1 + c1 ins(tj)

(1)

and the main dynamic programming recurrence is:

dist1i,j = min

�� � dist1i−1,j + c1 del(si)
dist1i,j−1 + c1 ins(tj)
dist1i−1,j−1 + c1 sub(si, tj)

(2)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Here deletions, insertions, and
mismatches are charged positive costs, and exact matches
are charged negative costs. The computation builds a ma-
trix of distance values working from the upper left corner
(dist10,0) to the lower right (dist1m,n).

By maintaining the decision(s) used to obtain the mini-
mum in each step, it becomes possible to backtrack the com-
putation and obtain, in essence, an explanation of the errors
that arose in processing the input. Such information can be
invaluable in analyzing the performance of text processing
algorithms.

This basic approach to computing edit distance can be
supplemented to model split and merge operations, which
we can think of as multi-symbol substitutions. For exam-
ple, csubk:l

corresponds to a substitution of k symbols in the
source string to l symbols in the target string. The recur-
rence then becomes:

dist1i,j = min

���� ���
dist1i−1,j + c1 del(si)
dist1i,j−1 + c1 ins(tj)
min1≤k′≤k, 1≤l′≤l[ dist1i−k′,j−l′ +

c1 subk:l
(si−k′+1...i, tj−l′+1...j)]

(3)

where k′ and l′ range up to the maximum allowed size of a
multi-symbol substitution.

In looking at how these ideas might be generalized to later
stages of text processing, we consider the output of those
stages and the errors that might arise. Tokenization, for
example, might fail to recognize a token boundary thereby
combining two tokens into one (a “merge”), or break a token
into two more more pieces (a “split”). Similar errors may
arise in sentence boundary detection.

While a single level of dynamic programming is sufficient
to account for such effects, it will not allow us to reconstruct
what has happened at a high level and assign errors to the
processing stages where they arose. To accomplish this goal,
we need to apply additional levels in the optimization [9].

In our current work, we adopt a three level hierarchy.
At the highest level, sentences (or purported sentences) are
matched allowing for missed or spurious sentence bound-
aries. The basic entity in this case is a sentence string, and
the costs of deleting, inserting, substituting, splitting, or
merging sentence strings are defined recursively in terms of
the next level of the hierarchy, which is tokens. As with the
sentence level, tokens can be split or merged. Comparison
of tokens is defined in terms of the lowest level of the hierar-
chy, which is the basic approximate string matching model
we began this section with (Equations 1-3).

In terms of dynamic programming, at the token level, the

algorithm becomes:

dist2i,j = min

���� ���
dist2i−1,j + c2 del(si)
dist2i,j−1 + c2 ins(tj)
min1≤k′≤k, 1≤l′≤l[ dist2i−k′,j−l′ +

c2 subk:l
(si−k′+1...i, tj−l′+1...j)]

(4)

where the inputs are assumed to be sentences and cdel, cins,
and csub are now the costs of deleting, inserting, and substi-
tuting whole tokens, respectively. The initial conditions are
defined analogously to Equation 1.

Since the basic editing operations now involve tokens, it
is natural to define the new costs as:

c2 del(si) ≡ dist1(si, φ)
c2 ins(tj) ≡ dist1(φ, tj)
c2 subk:l

(si−k′+1...i, tj−l′+1...j) ≡ dist1(si−k′+1...i, tj−l′+1...j)
(5)

where φ is the null string. Hence, the second-level compu-
tation is defined in terms of the first-level computation.

Lastly, at the highest level, the input is a whole page and
the basic editing entities are sentences. For the recurrence,
we have:

dist3i,j = min

���� ���
dist3i−1,j + c3 del(si)
dist3i,j−1 + c3 ins(tj)
min1≤k′≤k, 1≤l′≤l[ dist3i−k′,j−l′ +

c3 subk:l
(si−k′+1...i, tj−l′+1...j)]

(6)

with costs:

c3 del(si) ≡ dist2(si, φ)
c3 ins(tj) ≡ dist2(φ, tj)
c3 subk:l

(si−k′+1...i, tj−l′+1...j) ≡ dist2(si−k′+1...i, tj−l′+1...j)
(7)

By executing this hierarchical dynamic programming from
the top down, given an input page for the OCR results and
another for the ground-truth, we can determine an opti-
mal alignment between purported sentences, which is de-
fined in terms of an optimal alignment between individual
tokens in the sentences, which is defined in terms of an op-
timal alignment between each possible pairing of tokens (in-
cluding the possibilities that tokens are deleted, inserted,
split, or merged). Once an alignment is constructed using
the orthography of the input text strings, we may compare
the part-of-speech tags assigned to corresponding tokens to
study the impact of OCR errors on that process as well.

4. EXPERIMENTAL RESULTS
We took 10 pages of text from the opening chapters of the

Project Gutenberg edition of the well-known novel Moby-
Dick [14], formatted the pages in 12-point Times, printed
them on a laserprinter, and then scanned them at 300 dpi
bitonal using an automatic sheet feeder. One set of pages
was scanned as-is, another was first photocopied through
three generations with the contrast set to the darkest possi-
ble setting, a third was similarly photocopied through three
generations at the lightest possible setting, and a fourth set
was faxed before scanning. We then ran the resulting bitmap
images through the gocr OCR package.

It is traditional to judge basic OCR accuracy using a sin-
gle level of dynamic programming, i.e., Equations 1-2 (see,
e.g., [3]). These results for the four datasets are presented
in Table 1. As in the information retrieval domain, preci-
sion and recall reflect two different aspects of system per-
formance. The former is the fraction of reported entities



Table 1: Average OCR performance relative to ground-truth.

All Symbols Punctuation Whitespace
Prec. Recall Overall Prec. Recall Overall Prec. Recall Overall

Clean 0.982 0.988 0.988 0.843 0.973 0.912 0.974 0.996 0.985
Light 0.646 0.747 0.790 0.193 0.648 0.315 0.589 0.965 0.730
Dark 0.411 0.575 0.628 0.090 0.686 0.170 0.391 0.884 0.539
Fax 0.584 0.644 0.732 0.201 0.625 0.306 0.608 0.890 0.717

that are true, while the latter is the fraction of true entities
that are reported. Note that the baseline OCR accuracy
is quite high, but performance deteriorates rapidly for the
degraded documents. It is also instructive to consider sepa-
rately the impact on punctuation symbols and whitespace;
these results are also shown in the table. Note that punctu-
ation symbols in particular are badly impacted, with a large
number of false alarms (low precision), especially in the case
of the dark dataset where fewer than one in 10 reports are
true. This phenomenon has serious implications for sentence
boundary detection and later stages of text processing.

We then ran sentence boundary detection, tokenization,
and part-of-speech tagging on both the OCR output and the
ground-truth and compared the results using the paradigm
described in the previous section. As noted, this allows us to
both quantify performance as well as to determine the op-
timal alignments between sequences and hence identify the
actual errors that have arisen. An example of a relatively
simple alignment taken from the light dataset is shown in
Figure 1. On the other hand, Figure 2 shows a more chal-
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Figure 1: Example of a straightforward alignment.

lenging instance from the same dataset, demonstrating the
power of this technique in aligning very noisy inputs.
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Figure 2: Example of a challenging alignment.

A tabulation of the dynamic programming results for the

three text processing stages appears in Table 2. Here we see
that the clean input is processed with better than 95% ac-
curacy, which is what we would expect. Note, however, that
the degraded documents yield poor results, especially the
dark dataset which was flagged earlier for the large number
of spurious punctuation symbols it introduces. As our work
in this area is just beginning, we expect to be able to develop
more detailed analyses of such results, on larger datasets, as
time progresses.

5. CONCLUSIONS
In this paper, we have discussed some of the challenges

in evaluating the performance of text processing algorithms
operating on noisy documents. In particular, we considered
a pipeline consisting of four stages: optical character recog-
nition, sentence boundary detection, tokenization, and part-
of-speech tagging. Our ultimate goal is to study methodolo-
gies for testing each step when run on noisy documents and
analyzing the errors that arise. Such knowledge will pro-
vide a solid basis for the development of more robust text
processing techniques.

Many followup investigations suggest themselves, some of
which have already been suggested in the context of earlier
work on summarization [8]. We regard the user interface as
a crucial component in real-world text processing systems.
Given that noisy documents, and hence data extracted from
them, may contain errors, it is important to find the best
ways of displaying such information so that the user may
proceed with confidence, knowing that the information is
truly representative of the document(s) in question.

Since errors propagate from one stage of the pipeline to
the next, sentence boundary detection algorithms that work
reliably for noisy documents are clearly important. One
way to achieve this might be to retrain an existing system
on noisy documents so that it will be more tolerant of noise.
However, this is only applicable if the noise level is low.
Significant work is needed to develop robust methods that
can handle documents with high noise levels.

It is important to choose an appropriate unit level to rep-
resent information. For clean text, sentence extraction is a
feasible goal since we can reliably identify sentence bound-
aries. For documents with very low levels of noise, sentence
extraction is still possible since we can probably improve
our programs to handle such documents. However, for doc-
uments with relatively high noise rates, it may be better
to forgo sentence extraction and instead favor extraction
of keywords or noun phrases. It may also be desirable to
attempt to correct the noise in the extracted keywords or
phrases. There has been past work on correcting spelling
mistakes and errors in OCR output; these techniques would
be useful in noisy documents.



Table 2: Average text processing performance relative to ground-truth.

Sentence Boundaries Tokenization Part-of-Speech Tagging
Prec. Recall Overall Prec. Recall Overall Prec. Recall Overall

Clean 0.939 0.985 0.961 0.975 0.994 0.984 0.953 0.975 0.964
Light 0.648 0.906 0.731 0.646 0.877 0.733 0.307 0.500 0.380
Dark 0.321 0.995 0.405 0.388 0.691 0.479 0.097 0.210 0.132
Fax 0.442 0.987 0.536 0.494 0.674 0.563 0.203 0.303 0.242

The quality of text processing is directly tied to the level
of noise in a document. It is not seriously impacted in the
presence of minor errors, but as errors increase, results may
range from being difficult to read to incomprehensible. In
this context, it would be useful to develop methods for as-
sessing document noise levels without having access to the
ground-truth. Such measurements could be incorporated
into text processing algorithms for the purpose of avoiding
problematic regions, thereby improving the overall readabil-
ity. Past work on attempting to quantify document image
quality for predicting OCR accuracy [1, 2, 6] addresses a re-
lated problem, but one which exhibits some significant differ-
ences. One possibility would be to establish a robust index
that measures whether a given section of text is processable.
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