
CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 1 -

CSE 397-497:
Computational Issues in

Molecular Biology

Lecture 3

Spring 2004

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 2 -

Remember

For your class lecture, you must give me a ranked list of your
top 3 topics in order of preference by 5:00 pm today:

• sequence comparison & alignment (pairwise & multiple),
• sequencing and sequence assembly,
• physical mapping of DNA,
• phylogenetic trees,
• genome rearrangements,
• RNA and protein structure prediction,
• DNA microarrays,
• DNA computing.or

de
r w

e
w

ill
 c

ov
er

 to
pi

cs
 in

 c
ou

rs
e

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 3 -

Sequence comparison and alignment

Question: how can we measure sequence similarity?

Consider:

AGTAGCATC

AGTGCACC

AGTAGCATC

GACACGATT
versus

That the two DNA fragments on the left somehow seem more
similar than the two on the right could be significant.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 4 -

Motivation

Why is this important?

• Given a new DNA sequence, one of the first things a
biologist will want to do is search databases of known
sequences to see if anyone has recorded something similar.
(As we've seen, genetic sequences are long and the
databases are enormous, so efficiency will be an issue.)

• Sequence similarity can provide clues about function.

• Many other problems from computational biology incorporate
some notion of sequence similarity as a basic premise.

• Similarity can provide clues about evolutionary relationships.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 5 -

Sequence concepts

A sequence is a linear string of symbols over a finite alphabet.

Some basic sequence concepts:

(Note: string and sequence are often used synonymously.)

number of symbols in s (written |s|).length

sequence of length 0 (written).empty string

sequence that can be obtained from s
by removing some symbols (ACG is a
subsequence of TATCTG).

subsequence

if t is a subsequence of s, then s is a
supersequence of t.

supersequence

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 6 -

Sequence concepts

More basic sequence concepts:

sequence of consecutive symbols
appearing in s (ACG is not a substring
of TATCTG, but TCT is).

substring

(Observation: every substring is a subsequence of the string in
question, but not vice versa.)

if t is a substring of s, then s is a
superstring of t.

superstring

set of consecutive indices of a string,
e.g., [2..4] refers to 2nd through 4th
symbols of string s, or s[2]s[3]s[4].

interval

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 7 -

Sequence concepts

And lastly:

substring of s of the form s[1..j] where 0 j |s|
(when j = 0, prefix is the empty string).

prefix

substring of s of the form s[i..|s|] where 1 i |s| + 1
(when i = |s| + 1, suffix is the empty string).

suffix

AT is a prefix (and substring and subsequence) of ATCCAG.

AG is a suffix (and substring and subsequence) of ATCCAG.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 8 -

Sequences

The concept of a sequence is extremely broad. In this course,
we are concerned with genetic sequences. However, there are
other important kinds of sequence data:

• ASCII text,
• speech,
• handwriting (pen-strokes).

Likewise, the same algorithmic techniques turn up again and
again, often under different names:

• approximate string matching,
• edit (or evolutionary) distance,
• dynamic time warping.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 9 -

Sequence comparison: a false start

A
An obvious idea that comes to mind is to line up each symbol
and count the number that don't match:

This is known as Hamming
distance and forms the basis
for most error correcting codes.A

C

A

G

G

T

A

G

G

C

C
= 2

But it doesn't work for the kinds of sequences we care about:

A
Just one missing symbol at the
start of the second sequence
leads to a large distance.C

C

G

G

T

T

G

G

C

C
= 6

?

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 10 -

Sequence manipulation at the genetic level

http://www.accessexcellence.org/AB/GG/nhgri_PDFs/deletion.pdf
http://www.accessexcellence.org/AB/GG/nhgri_PDFs/insertion.pdf

Genomes aren't static ...

... sequence comparison must account for this.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 11 -

Sequence manipulation at the genetic level

http://www.accessexcellence.org/AB/GG/mutation.html

Different kinds of mutations can arise during DNA replication.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 12 -

The human factor

In addition, errors can arise during the
sequencing process:

"...the error rate is generally less than 1%
over the first 650 bases and then rises
significantly over the remaining sequence.”
http://genome.med.harvard.edu/dnaseq.html

A hard-to-read gel (arrow marks
location where bands of similar

intensity appear in two different lanes):
http://hshgp.genome.washington.edu/teacher_resources/99-studentDNASequencingModule.pdf

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 13 -

Sequence alignment

As we have seen, the two sequences we wish to compare may
have different lengths. As a result, we need to allow for
deletions and insertions.

The notion of an alignment helps us visualize this:

A

C

C

G

G

T

T

G

G

C

C A

C

C

G

G

T

T

G

G

C

C

-?

Alignment permits us to incorporate “spaces” (represented by a
dash) in one or both sequences to make them the same length.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 14 -

Sequence alignment

How can we find the best alignment?

A

C

C

G

G

T

T

C

G

C

C

- T

-

G

G

C

C

-

T

-

G

C

C

T

T

G

G

C

-

A

C

C

G

G

T

T

C

G

C

C

- T G

G

C

C T G

C

-

T

T

G

G

C

-C

- -

This alignment has 6 mismatches. Is it the best possible?

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 15 -

Sequence alignment

First some ground-rules.

A

-

Legal: -

T

Legal:

C

C

Legal: G

C

Legal:

-

-

Not legal:deletion insertion

mismatchmatch

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 16 -

Sequence comparison: the basic algorithm

Fortunately we don't have to. The optimal alignment can be
found using a technique known as dynamic programming.

We can't afford to enumerate all possible alignments looking
for the best one – that would be an exponential search.

Dynamic programming is based on the premise of computing
the solutions to smaller subproblems first and then using these
to solve successively larger problems until we have our answer.

(Dynamic programming was invented by Richard Bellman in the 1950's. Its
application to sequence comparison came later, in the 1970's.)
http://fens.sabanciuniv.edu/msie/operations_research_50_years/anniversary/or50/1526-5463-2002-50-01-0048.pdf

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 17 -

Sequence comparison: the basic algorithm

So, assuming we've already computed solutions for all shorter
prefixes, we can compute the alignment for s[1..i] and t[1..j].

Given two sequences s and t, consider what's required to
compute optimal alignment for prefixes s[1..i] and t[1..j]. Based
on our rules for alignments, there are three possible cases:

s[i]

-

-

t[j]

s[i]

t[j]

optimal
alignment
for s[1..i-1]
and t[1..j]

optimal
alignment
for s[1..i]

and t[1..j-1]

optimal
alignment
for s[1..i-1]
and t[1..j-1]

I II III

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 18 -

Sequence comparison: the basic algorithm

Conceptually, this might look
something like this:

optimal alignment at
s[1..i] and t[1..j] = max

optimal alignment at
s[1..i] and t[1..j-1]

+
cost of inserting t[j]

optimal alignment at
s[1..i-1] and t[1..j]

+
cost of deleting s[i]

optimal alignment at
s[1..i-1] and t[1..j-1]

+
cost of matching s[i] and t[j]

Here we assume that deletions,
insertions, and mismatches
have negative costs, while
matches have positive cost.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 19 -

s
t r

 i
n

g

s

s t r i n g t
cost of inserting t

Sequence comparison: the basic algorithm

This computation can be viewed as building a 2-D matrix:

co

st
 o

f d
el

et
in

g
s

0

where -2 is the cost of an indel, and p(i,j) is the cost of
a match/mismatch (using your book's notation).

a[i,j] = max

a[i-1,j] - 2

a[i,j-1] - 2

a[i-1,j-1] + p(i,j)

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 20 -

Sequence comparison: the basic algorithm

Stated more generally, say that our two sequences are:

a[i,j] = max

a[i-1,j] + cdel(s[i])

a[i,j-1] + cins(t[j])

a[i-1,j-1] + csub(s[i],t[j])

s[1]s[2]s[3]...s[m] t[1]t[2]t[3]...t[n]

Where cdel, cins, and csub are the costs of a deletion, an
insertion, and a substitution, respectively.

1 i m, 1 j n

a[0,0] = 0
a[i,0] = a[i-1,j] + cdel(s[i])
a[0,j] = a[0,j-1] + cins(t[j])

Then:
1 i m
1 j n

And:

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 21 -

Sequence comparison: the basic algorithm

Example: say that cdel = -1, cins = -1,
csub = -1 if mismatch and +1 if match

A
C
G
T

-1
-2
-3
-4

0
-1
0
-1
-2

-1
0
-1
-1
-2

-2
-1
-1
-2
0

-3
C A T

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 22 -

Sequence comparison: some observations

Computation can progress in a number of ways:

or or

For sequences of length m and n,
s[1]s[2]s[3]...s[m] t[1]t[2]t[3]...t[n]

Computation time = O(mn), space = O(mn).

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 23 -

Sequence comparison: getting an alignment

A
C
G
T

C A T

We started with the notion of alignment. How do we get this?

-3 -1 -1 -2
-2

-2
-1-1

-2

-4

0

-1

-1

-2

-1

0

-30
-1 0

By keeping track of optimal decisions made during algorithm,

and then tracing back
optimal path.

G

A

C

C

T

T

A

-
(May not be unique).

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 24 -

More examples

Comparing ACGT vs. CAT:

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 25 -

More examples

Comparing ACGTAT vs. AGTTTG:

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 26 -

More examples

Comparing ACGTGCGCTGCTG
vs. CGTCCTGCCTGC:

A

C

C

G

G

T

T

C

G

C

C

- T G

G

C

C T G

C

-

T

T

G

G

C

-C

- -

Recall the trace we saw earlier:

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 27 -

Optimality of the algorithm

How do we know this agorithm finds an optimal alignment?

Your textbook finesses this point, but basically it hinges on:

• Bellman's principle of optimality for dynamic programming.
• The cost functions behaving properly (i.e., they must satisfy

the triangle inequality).

This could be an interesting topic for a lecture or final paper ...

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 28 -

Local comparison

So far, we have assumed the sequences must be matched in
their entirety. But this ignores interesting similarities that might
be present at the subsequence level:

G

A

A

T

C

A

G

C

G

GT C C A
Fortunately, a slight modification of the original algorithm can
handle this.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 29 -

Local comparison

As before, say that our two sequences are:

a[i,j] = max

a[i-1,j] + cdel(s[i])

a[i,j-1] + cins(t[j])

a[i-1,j-1] + csub(s[i],t[j])

s[1]s[2]s[3]...s[m] t[1]t[2]t[3]...t[n]

1 i m, 1 j n

a[0,0] = 0
a[i,0] = 0
a[0,j] = 0

Then:
1 i m
1 j n

And:

0

When done, we search the matrix for the largest value.

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 30 -

Local comparison

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 31 -

Local comparison

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 32 -

Local comparison

CSE 397-497: Computational Issues in Molecular Biology
Lopresti · Spring 2004 · Lecture 3 - 33 -

Wrap-up

Remember:
• Come to class prepared to discuss what you have read.
• Check Blackboard regularly for updates.

Readings for next time:
• Section 3.3 in your textbook.
• “The emerging landscape of bioinformatics software systems”

by L.S. Heath and N. Ramakrishnan, IEEE Computer, July
2002, pp. 41-45. (Available online or in Blackboard.)

