Midterm Study Guide

Midterm Time and Place:

- Wednesday, February $29,1: 10 \mathrm{pm}-2 \mathrm{pm}$
- Packard 466 (our usual room)

Format:

The test will be held in class. You can expect the following types of questions: true/false, short answer, and smaller versions of homework problems. It will be closed book and closed notes. However, you may bring one $8 \frac{1}{2} \times 11$ " "cheat sheet" with handwritten notes on one-side only. Also, all calculators, PDAs, portable audio players (e.g., iPods) and cell phones must be put away for the duration of the test.

Coverage:

In general, anything from the assigned reading or lecture could be on the test. In order to help you focus, I have provided a partial list of topics that you should know below. In some cases, I have explicitly listed topics that you do not need to know. In addition, you do not need to reproduce the pseudo-code for any algorithm, but you should be able to apply the principles of the major algorithms to a problem as we have done in class and on the homework.

- Ch. 1 - Introduction
- rationality
- definitions of "artificial intelligence"
- The Turing Test
- you do not need to know:
- dates and history
- Ch. 2 - Agents
- PEAS descriptions
- performance measure, environment, actuators, sensors
- properties of task environments
- fully observable vs. partially observable, deterministic vs. stochastic vs, strategic, episodic vs. sequential, static vs. dynamic, discrete vs. continuous, single agent vs. multiagent, known vs. unknown
- agent architectures
- simple reflex agents, goal-based agents, utility-based agents
- state representations
- atomic, factored, structured
- you do not need to know:
- learning agents
- Ch. 3 - Search
- problem description
- initial state, actions, transition model, goal test, path cost/step cost
- tree search
- expanding nodes, frontier
- branching factor
- graph search
- explored set
- uninformed search strategies
- breadth-first, depth-first, uniform cost
- similarities and differences / benefits and tradeoffs between strategies
- evaluation criteria
- completeness, optimality, time complexity, space complexity
- best first search
- evaluation function
- informed search
- heuristics
- greedy best-first, A*
- admissible heuristics
- similarities and differences / benefits and tradeoffs between strategies
you do not need to know:
- depth-limited, iterative deepening or bidirectional search
- details of proof that A^{*} is optimal if $\mathrm{h}(\mathrm{n})$ is admissible
- memory bounded heuristic search
- learning heuristics from experience
- Ch. 5 - Game playing (Sect. 5.1-5.2, 5.4, 5.7-5.9)
two-player zero-sum game
problem description
- initial state, actions, transition model, terminal test, utility function
minimax algorithm
optimal decision vs. imperfect real-time decisions
evaluation function, cutoff-test
you do not need to know:
- alpha-beta pruning
- forward pruning
- details of any state-of-the-art game playing programs
- Ch. 7 - Logical Agents (Sect. 7.1-7.4, 7.5.3-7.54, 7.7-7.8)
- knowledge-based agents
- TELL, ASK
propositional logic
- syntax and semantics
entailment, models, truth tables
model checking
inference procedures
- forward-chaining
- backward-chaining
- sound, complete
you do not need to know:
- details of the Wumpus world
- circuit-based agents
- Ch. 8 - First-Order Logic
- syntax and semantics
- be able to translate English sentences into logic sentences
quantification
- existential, universal
- domain, model, interpretation
equality/inequality
- making statements about quantity (e.g., exactly two brothers)
you do not need to know:
- specific axioms from the domains given in class or the book
- "Intro to Prolog Programming" Reading, Ch. 1
- syntax
- be able to write rules and facts in Prolog
- translating to FOL and vice versa
- negation as failure

