Midterm Study Guide

Midterm Time and Place:

- Wednesday, March 2, 1:10pm 2pm
- Packard 466 (our usual room)

Format:

The test will be held in class. You can expect the following types of questions: true/false, short answer, and smaller versions of homework problems. It will be closed book and closed notes. However, you may bring one $8 \frac{1}{2} \times 11$ " "cheat sheet" with handwritten notes on one-side only. Also, all calculators, PDAs, portable audio players (e.g., iPods) and cell phones must be put away for the duration of the test.

Coverage:

In general, anything from the assigned reading or lecture could be on the test. In order to help you focus, I have provided a **partial list** of topics that you should know below. In some cases, I have explicitly listed topics that you do not need to know. In addition, you do not need to reproduce the pseudo-code for any algorithm, but you should be able to apply the principles of the major algorithms to a problem as we have done in class and on the homework.

- Ch. 1 Introduction
 - o rationality
 - o definitions of "artificial intelligence"
 - The Turing Test
 - you do not need to know:
 - dates and history
- Ch. 2 Agents
 - PEAS descriptions
 - performance measure, environment, actuators, sensors
 - properties of task environments
 - fully observable vs. partially observable, deterministic vs. stochastic vs, strategic, episodic vs. sequential, static vs. dynamic, discrete vs. continuous, single agent vs. multiagent, known vs. unknown
 - agent architectures
 - simple reflex agents, goal-based agents, utility-based agents
 - state representations
 - atomic, factored, structured
 - you do not need to know:
 - learning agents
- Ch. 3 Search
 - problem description
 - initial state, actions, transition model, goal test, path cost/step cost
 - tree search
 - expanding nodes, frontier
 - branching factor
 - o graph search
 - explored set
 - uninformed search strategies
 - breadth-first, depth-first, uniform cost
 - similarities and differences / benefits and tradeoffs between strategies
 - evaluation criteria
 - completeness, optimality, time complexity, space complexity

- best first search
 - evaluation function
- informed search
 - heuristics
 - greedy best-first, A*
 - admissible heuristics
 - similarities and differences / benefits and tradeoffs between strategies
- you do not need to know:
 - depth-limited, iterative deepening or bidirectional search
 - the exact O() for any strategy's time/space complexity (but you should know relative complexity)
 - details of proof that A* is optimal if h(n) is admissible
 - memory bounded heuristic search
 - learning heuristics from experience
- Ch. 5 Game playing (Sect. 5.1-5.2, 5.4, 5.7-5.9)
 - two-player zero-sum game
 - problem description
 - initial state, actions, transition model, terminal test, utility function
 - minimax algorithm
 - o optimal decision vs. imperfect real-time decisions
 - \circ evaluation function, cutoff-test
 - you do not need to know:
 - alpha-beta pruning
 - forward pruning
 - details of any state-of-the-art game playing programs
- Ch. 7 Logical Agents (Sect. 7.1-7.4, 7.7-7.8)
 - knowledge-based agents
 - TELL, ASK
 - propositional logic
 - syntax and semantics
 - o entailment, models, truth tables
 - o valid, satisfiable, unsatisfiable
 - \circ model checking
 - you do not need to know:
 - details of the Wumpus world
 - circuit-based agents
- Ch. 8 First-Order Logic

0

- o syntax and semantics
 - be able to translate English sentences into logic sentences
- o quantification
 - existential, universal
- o domain, model, interpretation
- o equality/inequality
 - making statements about quantity (e.g., exactly two brothers)
- you do not need to know:
 - specific axioms from the domains given in class or the book