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Abstract—This paper presents EPAC (Electrostatic isoPotential
Analytical Comparative model), the first statistical model for
evaluating the geometric similarity of electrostatic fields. Begin-
ning with aligned binding cavities, EPAC measures similarity
based on the overlapping volume of isopotentials inside ligand
binding cavities. We tested the accuracy of our model on two
subfamilies of the serine protease superfamily, demonstrating
that EPAC effectively identifies binding sites that prefer differ-
ently charged substrates. For example, EPAC identified subtle
electrostatic variations in proteins that might be expected to be
more similar, such as the difference between typical trypsins and
a trypsin with a phosphorylated tyrosine nearby the binding
site. These results point to applications in the unsupervised
comparison of many binding sites from a purely electrostatic
perspective, in the search of subtle electrostatic variations that
could influence binding specificity.

I. INTRODUCTION

Statistical models of geometric variation are widely used

in protein structure comparison. These models are trained

to establish the typical degree of geometric variation that

occurs between protein structures with similar function [1]–

[4] or specificity [5]–[8]. Once trained, effective models can

automatically detect proteins with atypical structural similarity

with constant computational cost [9]–[11]. As a result, statis-

tical models enable investigators to identify unusual proteins

at a large scale without human supervision.

Statistical models are closely tied to geometric measures of

similarity. Most methods reported to date model the variation

of root mean squared distance (RMSD) between the backbone

atoms of whole protein structures [12]–[18]. A second cate-

gory of methods model variation between atoms representing

protein ligand binding sites [9], [19]–[22]. Naturally, many

biophysical variations exist between proteins that are not

represented by RMSD, such as the presence of cavities [23],

[24], the number of atoms being compared [25], evolution-

ary significance [3] or electrostatics [20], [26], [27]. These

variations can influence the model because of their effect on

membership in the training set, but their influence is contingent

on detection of geometric similarity.

This paper examines the effect of modeling geometric simi-

larity in electrostatic isopotentials (EP) between ligand binding

cavities. Beginning with two aligned binding cavities, we
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measure similarity between electrostatic isopotentials based

on their degree of volumetric overlap. We use this value to

train a parametric statistical model of the similarities that exist

between binding cavities with identical binding preferences.

The EP similarity observed from subsequent comparisons can

then be evaluated according to the model, generating a p-value

that describes how unusual it is relative to the training set.

In our results, we demonstrate on two families of serine

proteases that our parametric model distinguishes pairs of pro-

teins with similar electrostatic binding preferences from those

with different electrostatic binding preferences. This unique

approach, the first statistical model of purely electrostatic

similarity, is totally independent of atomic comparison and

it illustrates that alternatives to statistical models of RMSD

are possible and that they can be effective tools for specificity

annotation. In addition to applications in specificity annotation,

where it could be used for finding electrostatic variations that

likely cause differences in specificity, EPAC could also be

applied in concert with existing statistical models of structural

variation. By integrating probability estimates from multiple

sources, a compound statistical model could point to the po-

tential for influences on specificity from multiple biophysical

sources.

II. METHODS

This section describes, first, how we compute EP similarity,

how we train to the statistical model, how statistical signifi-

cance is determined, and how the data set is constructed.

A. Measuring Electrostatic Similarities

We begin with two aligned protein structures and a potential

threshold k, which determines the potential at which isopo-

tential geometry in the binding sites of the proteins will be

compared. We evaluate electrostatic similarity using Boolean

operations from constructive solid geometry (CSG, Figure

1). Beginning with two aligned protein structures, a bound

ligand, and a threshold of electrostatic potential, we generate a

volumetric description of each binding cavity using a subcavity

method described earlier [28] (Figure 1d,e). Next, we use CSG

to compute the volumetric intersection of the two cavities.

This intersecting region, is solvent accessible in both cavities,

and thus a region where steric differences do not interfere
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Fig. 1. Comparing cavity fields. a) Boolean operations. Dotted lines define input regions. Solid lines define output regions. b,c) Molecular surface of two
aligned proteins. Dotted lines denote boundaries of the binding cavities. d,e) Binding cavities. f) Intersection of binding cavities based on the alignment of the
proteins (orange). g,h) Electrostatic potential fields illustrated as multiple positive isopotentials (transparent blue) over the conserved binding region (orange).
The selected isopotential is highlighted with a thin black line. i,j) Cavity fields of both proteins. k,l) The intersection (k, green with solid lines) and union (l,
green with solid lines) of the cavity fields (dotted).
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Fig. 2. Computing the p-value using the best fitting log-normal distribution.

with electrostatic similarities or differences. We perform our

electrostatic comparisons in this region.

Next, we use Delphi [29] to compute the electrostatic fields

of both proteins, and VASP-E [30] to generate the electrostatic

isopotential based on the provided potential threshold. The

CSG intersection between the isopotential and the cavity

intersection above yields a description of the electrostatic field

of each protein within the region of the binding site that is

shared by both proteins. For any given protein, we refer to

this region as a cavity field defined on k.

Given a pair of aligned cavity fields c0 and c1, we define

volumetric similarity d(c0, c1) using the Jaccard index d(C):
[31]

d(C) = 1−
v(c0 ∩ c1)

v(c0 ∪ c1)

.

Here, v(x) denotes the volume of space within some

geometric solid x. We compute v(x) with the Surveyor’s

Formula [31]. We subtract the fraction from 1, to produce

an electrostatic distance: Cavity fields with substantial EP

similarity yield distances close to zero, while the distance

between very different cavity fields approaches one.

B. Statistical Model of Electrostatic Similarity

Hypothesis testing is used to categorize EP similarity. Our

hypothesis testing framework begins with the conjecture that

aligned cavities with identical binding preferences exhibit a

large degree of similarity. Conversely, we also conjecture that

aligned cavities with differing binding preferences exhibit a

remarkably small degree of EP similarity, when compared

to those cavities with identical binding preferences. In ac-

cordance with this first premise, our null hypothesis is that

the aligned cavities of the pairs of proteins have similar

EP fields. Subsequently, our alternate hypothesis is that the

aligned cavities of protein pairs have significantly differing

EP fields. In other words, the null hypothesis associates

variation in EP fields, and their measurements to random

chance, while the alternate hypothesis asserts that the variation

is significant enough to claim that a non-random cause, i.e.

differing binding preferences, causes the disparity in EP fields

and their measurements.

The value p, as used in this study, is the probability that an

observation would exhibit an EP similarity less than or equal

to the EP similarity identified for the specific protein pair (for

which the p value is associated) due to chance. In other words,

the probability that the observed data would be inconsistent

with the null hypothesis, assuming the null hypothesis is true.

If the probability is small enough (conventionally .05 is the

user defined significance level), then the p value is said to

be significant. This observation would justify the rejection of

the null hypothesis in favor of the alternate hypothesis that

the disparities in EP fields are extreme due to differences in

binding preferences.

To carry out this analysis, we first estimate the value of p,

which requires us to train a statistical model. We measure EP

similarity in every possible combination of proteins with like

and non-like binding preferences; this whole set is referred to

as E. We then divide the E into training sets and test sets.

All training sets are referred to as C, which consist of only

like-binding pairs and all test sets (which must be associated

to their corresponding training set) are referred to as C′ (“not

C”), which is a set of all pairs of cavities not in C. C′ has both

like and non-like binding preference pairs. Additionally, C′

i
is

an element of the set C′. The model trains on each set C and,

if training is successful, it is expected to represent the range

of EP similarity measurements that would be anticipated from

any other set made up of protein pairs with similar binding

preferences.

As it happens, the shape of the frequency distribution of the

1247



EP similarity measurements tightly fits the log-normal distri-

bution. Thus, we use the log normal distribution to estimate the

probability, p, of observing a specific value for EP similarity

for a given pair of proteins. We make this estimation by

approximating the parameters of the log-normal distribution: µ

and σ, which are the population mean and population standard

deviation for the log-transformed distribution respectively. We

approximate these values by calculating the sample mean and

standard deviation for every combination of measurements (i.e.

for every possible set of C). We, at last, calculate the value of

p by using equation 1. The value of p is estimated to be the

area under the log-normal curve to the left of C′

i
, where the

area under the curve is equal to 1.

Given the trained statistical model and the estimated p-

values, we hypothesize that protein pairs with a relatively

high p-value have identical binding preferences, while those

with a small p-value have different binding preference. We

test this hypothesis in the results section (Section III). When

we evaluate our hypothesis, we define true positives (TP)

as statistically significant differences between cavity fields

that actually have different binding preferences (e.g. between

trypsins and chymotrypsins). We define false positives (FN) as

statistically significant differences between cavity fields that

have the same binding preferences (e.g. between trypsins-

trypsins pairs). We define true negatives (TN) as statistically

insignificant differences between cavity fields that with the

same binding preferences, and false negatives (FN) as statis-

tically significant differences between cavity fields that with

the same binding preferences.

C. Building the Data Set

1) Selection: The serine protease superfamily was selected

for this study based on the criteria that it exhibits at least

two subfamilies with distinct binding preferences. The serine

protease class is the best-known class of proteases that uses the

classical Ser/His/Asp catalytic triad mechanism, where serine

is the nucleophile, histidine is the general base and acid, and

the aspartate helps orient the histidine residue and neutralize

the charge that develops on the histidine during the transition

states. Furthermore, the two subfamilies we choose to study,

chymotrypsin and trypsin, are both well-studied members of

this class.

Serine Protease Superfamily:

Chymotrypsins: 1eq9, 8gch

Trypsins: 1a0j, 1aks, 1ane, 1aq7, 1bzx, 1fn8,

1h4w, 1trn, 2eek, 2f91

Fig. 3. PDB codes used in the data set.

Serine proteases hydrolyze peptide bonds through the recog-

nition of adjacent amino acids with specificity subsites num-

bered S4, S3, . . . S1, S1′, S2′, . . . S4′. Each subsite preferen-

tially binds one amino acid before or after the hydrolyzed

bond between S1 and S1′. Cavities in our data set are derived

from the S1 subsite, which binds aromatics in chymotrypsins

[32] and positively charged amino acids in trypsins [33]. We

hypothesize that the electrostatic differences between the S1

subsites of the trypsins and chymotrypsins will be discernible

and statistically significant when evaluated with EPAC. Since

trypsins prefer positively charged substrates, we evaluated

electrostatic distances between all subsites at negative elec-

trostatic thresholds.

2) Preparation: The Protein Data Bank (PDB - 6.21.2011)

[34] contains 430 Serine proteases from the chymotrypsin

and trypsin families. From this set of proteins, we removed

partially disordered structures, mutant structures, and struc-

tures with more than 90% sequence identity, with prefer-

ence for structures associated with publications in print. This

filtration resulted in 12 serine protease structures. Within

these remaining structures, ions, waters, and other non-protein

atoms were removed. Since hydrogens were unavailable in all

structures, all hydrogens were removed as well for uniformity.

Atypical amino acids (e.g. phosphorylated tyrosines) were not

removed. After all hydrogens were removed, all structures

were reprotonated using the reduce component of MolProbity

[35], for uniformity.

3) Alignment: Using Ska [36], an algorithm for aligning

protein structures, all serine protease structures were aligned to

bovine gamma-chymotrypsin (pdb code: 8gch). All the struc-

tures in this superfamily exhibit identical folds, causing the

aligned structures of these proteins to exhibit little variation,

though smaller variations at the scale of the S1 binding site and

other subsites are expected. Following structural alignment,

solid representations of binding cavities were generated using

a method described earlier [28].
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Fig. 4. Quantile-quantile plot of distances between trypsin cavity fields
(vertical axis) and the theoretical normal distribution (horizontal axis). This
figure evaluates the fit between our data and the log-normal distribution.

III. EXPERIMENTAL RESULTS

A. Evaluating the Statistical Model

We evaluated two parametric models to potentially represent

the degree of EP similarity between binding cavities with

identical binding preferences. These were the log-normal and
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Fig. 5. Quantile-quantile plot of log transformed distances between trypsin
cavity fields (vertical axis) and the theoretical normal distribution (horizontal
axis). This figure evaluates the fit between our data and the normal distribution.

the normal distributions. To evaluate how well these models

fit the variations in electrostatic distances among the trypsin

subfamily, we generated quantile-quantile plots.

Figure 4 illustrates the correspondence between the elec-

trostatic distances in our data and the normal distribution.

Figure 5 illustrates the correspondence between the electro-

static distances in our data and the log-normal distribution.

Note that in Figure 5 we evaluate the log normal distribution

by fitting the log-transformed data to the normal distribution.

While both distributions fit the data closely, the log-normal

distribution exhibited a slightly superior correlation with the

data. Visually, it also exhibits a subtly better fit to the data

than the normal distribution. Based on these observations, we

selected the normal distribution on the log transformed data

to estimate p-values.

B. Electrostatic isoPotential Analytical Comparative Model

(EPAC)

We used leave-2-out cross-validation to test the predictive

accuracy of our model. After we computed the distances

between the cavity fields of the serine proteases, we developed

a process to designate the training sets and test sets. First,

we identified two trypsin proteins that we would leave out of

the training set. This process is depicted in Figure 6, where

a pair of trypsin are identified from the set of all trypsin-

trypsin (t-t) pairs and that pair along with all other pairs with

either of these specific trypsins are removed from the training

set. Simultaneously, we identified the four pairs of trypsin-

chymotrypsin (t-c) that correspond to the chosen t-t pair. After

we trained on the condensed training set t-t pairs, we evaluated

the statistical significance of the original left out t-t pair and

the four selected t-c pairs. CSG differences are asymmetrical,

so when the difference of a-b was computed, the difference of

b-a was computed as well. This selection and analysis process

was repeated until every t-t pair had been left out once.

We evaluated the number of TPs, TNs, FPs, and FNs at

four electrostatic potential thresholds: -10.0 kT/e, -7.5 kT/e, -

Fig. 6. Circles represent a trypsin and each number within the circle
designates a distinct trypsin (1 - 10). Squares represent a chymotrypsin and
the numbers 1 and 2 designate the two different chymotrypsin. The line
connecting trypsins (circles) and chymotrypsins (squares) indicates pairs and,
together, they represent their measurement of EP similarity. This diagram
demonstrates how a particular training and testing set would be chosen.

a) t-c pairs t-t pairs

Significant 128 12

Insignificant 232 78

b) t-c pairs t-t pairs

Significant 360 6

Insignificant 0 84

c) t-c pairs t-t pairs

Significant 358 12

Insignificant 2 78

d) t-c pairs t-t pairs

Significant 360 18

Insignificant 0 72

Fig. 7. Summary of the total number of TPs, TNs, FPs, and FNs, at the
-2.5 kT/e threshold (a), -5.0 kT/e threshold (b), -7.5 kT/e threshold (c), -10.0
kT/e threshold (d).

5.0 kT/e, and -2.5 kT/e (Figure 7). Based on the conventional

standard of significance, .05, EP measurements from proteins

with similar binding preferences (the t-t pairs) were statis-

tically insignificant in the majority of cases. At the smallest
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threshold we measured at, -10.0 kT/e, the EP similarities for t-

t pairs were statistically insignificant in 72 out of 90 cases. For

the -7.5 kT/e threshold, t-t pairs were statistically insignificant

in 78 out of 90 cases. For the -5.0 kT/e threshold, 84 out of

90 t-t pairs were statistically insignificant and the -2.5 kT/e

threshold had 78 out of 90 statistically insignificant t-t pairs.

At different potential thresholds, t-t pairs were statistically

insignificant at similar frequencies that remained close to 91.4

percent.

In the proteins with different binding preferences (the t-

c pairs), EP measurements were statistically significant ac-

cording to the conventional standard of significance, .05, in

the majority of cases, especially when using smaller potential

thresholds. At the smallest threshold we measured at, -10.0

kT/e, the EP differences for t-c pairs were statistically signif-

icant in 360 out of 360 cases. For the -7.5 kT/e threshold,

t-c pairs were statistically significant in 358 out of 360 cases.

For the -5.0 kT/e threshold, 360 out of 360 t-c pairs were

statistically significant and the -2.5 kT/e threshold had 128

out of 360 statistically significant t-c pairs. Overall, t-c pairs

were less frequently statistically significant as electrostatic

potential thresholds approached zero. These results indicate

that sensitivity improves as potential thresholds reach -10.0

kT/e. This effect is apparent in Figure 8, which illustrates the

relative p-values of t-t and t-c pairs.

We observed that the human trypsin 1 (1trn) displayed

results inconsistent with the rest of the data we analyzed. After

comparing the different trypsins, we were able to identify a

unique characteristic of 1trn that we believe is the cause of this

irregularity. This specific trypsin has a highly polar amino acid

(a phosphorylated tyrosine 151) abutting the binding site that

we are studying. This amino acid is affecting the EP field of

the 1trn binding site, causing the majority of the errors in the

following numbers. For the smallest threshold we measured

at, -10.0 kT/e, 0 out of 18 1trn-t pairs were insignificant and

72 out of 72 1trn-c pairs were significant. This indicated that

every pair of proteins that included 1trn, at this threshold, had a

statistically significant EP similarity measurement. For the -7.5

kT/e threshold, 1trn-t pairs were statistically insignificant in 6

out of 18 cases and 1trn-c pairs were significant in, again, 72 of

72 cases. The -5.0 kT/e threshold had 12 out of 18 statistically

insignificant 1trn-t pairs and had 72 out of 72 statistically

significant 1trn-c pairs. For the -2.5 kT/e threshold, there were

16 out of 18 statistically insignificant 1trn-t pairs and only

36 of 72 statistically significant 1trn-c pairs. Aside from data

generated at the -2.5 kT/e threshold, false positives (t-t pairs

that are statistically significant) at other thresholds always

involved 1trn. The only false negatives (t-c pairs that are sta-

tistically insignificant) below the -2.5 kT/e threshold occurred

when 1bzx and 2eek were left out, nudging the difference

between 1bzx-1eq9 into insignificance (p = .050516). 1eq9-

1bzx had the same p-value. These observations suggest that the

electrostatic differences between 1trn and other tyrosines stem

from the contribution of the phosphorylated tyrosine to the

negative charge in the S1 subsite, which creates the substantial

electrostatic differences with other tyrosines. This effect is also

apparent in Figure 8.

IV. DISCUSSION

We have described EPAC, a statistical model for evaluat-

ing the similarity of electrostatic isopotentials inside ligand

binding sites. After considering normal and log-normal dis-

tributions, we observed that log-normal distributions better

fit the distribution of distances between cavity fields from

trypsins. These preliminary results indicate one example that

it is possible to model such distributions.

Our experimental results show that EPAC effectively dis-

tinguishes pairs of cavity fields that are distant enough to

be statistically significant from those that are not. This trend

was observed when EPAC identified statistically significant

differences between trypsins and chymotrypsins at all electro-

static potential thresholds, though many more were significant

at lower isopotential thresholds. Likewise, most cavity fields

from pairs of trypsins were statistically insignificant, especially

as the absolute value of isopotential thresholds fall. These

results indicate that as we adjust isopotential thresholds from

-2.5 kT/e to -10.0 kT/e, EPAC became a more sensitive

classifier. This behavior is likely a result of the fact that neg-

ative isopotential thresholds that are closer to zero necessarily

contain isopotentials generated from thresholds that are more

negative. Larger isopotentials clearly diminish the specificity

of EPAC as a classifier, creating a larger number of false

positives (statistically significant differences between trypsin

cavity fields). Likewise, as isopotential thresholds fall towards

more negative values, false positives dropped. If thresholds

were extended even further to the negative side, cavity fields

become so small in volume that the probability of intersection

even between trypsins begins to fall, creating greater numbers

of false negatives. This effect was not observed at the isopo-

tential thresholds we considered.

EPAC also identified differences between the trypsins and

the structure of human trypsin 1 (pdb: 1trn). A phosphorylated

tyrosine 151 in human trypsin 1 created differences with other

trypsin cavity fields that was statistically significant, indicating

that even subtle differences such as this posttranslational

modification of an amino acid can be identified with EPAC.

EPAC is the first statistical model to operate independently

of atomic geometry, enabling a comparative analysis of elec-

trostatic fields without an algorithmic dependence on atomic

positions. In addition to operating as an stand-alone classifier,

this novel capability enables EPAC to add a nearly orthogonal

prediction to larger function annotation and specificity annota-

tion systems that complements existing atom-based statistical

models. For example, EPAC can contribute electrostatic infor-

mation to algorithms for comparing ligand binding sites (e.g.

[3]) and for identifying electrostatic influences on specificity

(e.g. [30]).
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