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Abstract

Hierarchical classification has been shown to have superior performance than

flat classification. It is typically performed on hierarchies created by and for hu-

mans rather than for classification performance. As a result, classification based

on such hierarchies often yields suboptimal results. In this paper, we propose a

novel genetic algorithm-based method on hierarchy adaptation for improved clas-

sification. Our approach customizes the typical GA to optimize classification hi-

erarchies. In several text classification tasks, our approach produced hierarchies

that significantly improved upon the accuracy of the original hierarchy as well as

hierarchies generated by state-of-the-art methods.

1 Introduction

Classification can be performed based on a flat set of categories, or on categories orga-

nized as a hierarchy. In flat classification, a single classifier learns to classify instances

into one of the target categories. In hierarchical classification, a separate classifier

is trained for each non-leaf node in the hierarchy. During training, each classifier is

trained to categorize the instances that belong to any of the descendants of the current

node into its direct subcategories. When deployed, an instance is first classified by the

root classifier, and then passed to one of the first level categories with the highest prob-

ability. This process is repeated iteratively from top to bottom, invoking one classifier

at each level, until reaching a leaf node.

Previous work has shown that hierarchical classification has performance superior

to that of flat classification (e.g., [4, 10, 1]). By organizing categories into a hierarchical

structure and training a classifier for each non-leaf node, each classifier can focus on a

smaller set of subcategories, and thus reduce the confusion from sibling branches.

∗Technical Report LU-CSE-11-002, Dept. of Computer Science and Engineering, Lehigh University,

Bethlehem, PA, 18015. A summary of this report is published as a poster paper [18].
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Hierarchical classification is typically performed utilizing human-defined hierar-

chies. Since such hierarchies reflect a human view of the domain, they are easy for

people to understand and utilize. However, these hierarchies are usually created with-

out consideration for automated classification. As a result, hierarchical classification

based on such hierarchies is unlikely to yield optimal performance.

In this paper, we propose a new classification method based on genetic algorithms

to create hierarchies better suited for automatic classification. In our approach, each hi-

erarchy is considered to be an individual. Starting from a group of randomly generated

seed hierarchies, genetic operators are randomly applied to each hierarchy to slightly

reorganize the categories. The newly generated hierarchies are evaluated and a subset

that are better fitted for classification are kept, eliminating hierarchies with poor classi-

fication performance from the population. This process is repeated until no significant

progress can be made. In our experiments on several text classification tasks, our algo-

rithm significantly improved classification accuracy compared to the original hierarchy

and also outperformed state-of-the-art adaptation approaches. Compared with previous

work, our approach is different in at least two aspects:

• After each iteration, we keep a comparatively large number of best performing

hierarchies rather than only keep the best one and discard the rest; we will show

later that the best hierarchy does not always come from an adaptation of the

previous best hierarchy.

• Unlike previous approaches that gradually adapt a hierarchy by making a slight

change at each step, the crossover operators we customize for hierarchy evolution

allow a new hierarchy to inherit characteristics from both parents, so that it is

significantly different from either parent. This will take previous approaches

many more iterations to achieve, or perhaps unachievable at all because of the

use of a greedy search strategy.

Our contributions include:

• a new, better-performing approach to improved classification by hierarchy adap-

tion; and,

• adaptation of genetic operators on hierarchies and an analysis of their utility.

The rest of this paper is organized as follows. Related work is reviewed in Section

2. We motivate and introduce our approach in Section 3, report the experimental setup

and results in Section 4, and conclude in Section 5.

2 Related Work

Here, we review existing work on hierarchical classification and hierarchy adaption.

2.1 Hierarchical classification

In this subsection, we focus on work on hierarchical classification without changing

the hierarchical structure. Kiritchenko [7] provided a detailed review of hierarchical

text categorization.
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Using classification tasks on web pages, Dumais and Chen [4] demonstrated that

hierarchical classification is more efficient and accurate than flat classification. One

major challenge in general for classification tasks is data sparsity, in which a category

has too few labeled instances for a classifier to learn a reasonable model. This problem

is prominent in hierarchical classification at lower levels. For such nodes, McCallum

et al. [12] proposed to use information from parent nodes to smooth the estimated

parameters. A similar idea is used in “Hierarchical Mixture Model” [26] proposed by

Toutanova et al., where a generative model incorporates the term probabilities from

all parent classes into the current class. Wibowo and Williams [27] suggested that an

instance should be assigned to a higher level category when a lower level classifier is

uncertain.

The hierarchical classification approaches mentioned above share a common char-

acteristic: they were posed as meta-classifiers built on top of base classifiers. Since

information about the hierarchy is handled by the meta-classifier, the base classifier is

not aware of the hierarchical structure. Cai and Hofmann [2] proposed a new approach

called hierarchical support vector machines in which the hierarchical structure infor-

mation is incorporated into the loss function of base classifier (in this case, SVM). This

approach can also be applied to a general, multi-label classification.

Scalability and effectiveness of hierarchical classifiers on large-scale hierarchies is

always a critical issue on real-world applications. Liu et al. [10] studied this problem

both analytically and empirically. They found that although hierarchical classification

is better for SVM classifiers compared with flat classification, it decreases classification

performance when using k-Nearest Neighbor and naive Bayes classifiers.

Utilizing additional features that are specific to a particular domain can potentially

improve classification performance. Complementary features that are only available in

hierarchical classification scenarios are also useful as shown by Bennett and Nguyen

[1] using two methods called “refinement” and “refined experts”, respectively. “Re-

finement” enhances the training process by performing cross-validation on the training

set and using the predicted labels to filter training data so that it better matches the

distribution of test data. In “refined experts”, an augmented document representation is

generated by including the predicted labels from lower level categories. In their experi-

ments, both methods outperform the typical hierarchical SVM, while “refined experts”

yields a better performance.

With regard to the evaluation of hierarchical classification, Sun and Lim [22] pro-

posed measuring the performance of hierarchical classification by the degree of mis-

classification, as opposed to measuring the correctness, considering distance measures

between the classifier-assigned class and the true class.

2.2 Hierarchy adaptation

A variety of approaches have been proposed for hierarchy generation or adaptation.

Some of them aim to better assist human browsing (e.g., [13, 8, 19]). Some are pro-

posed and evaluated for general purposes, rather than accurate classification (e.g., [20,

6, 16]). Here, we only focus on the methods that are solely or partially designed for

a better automatic classification. These methods can be categorized into two subcate-

gories: generative approaches and adaptation approaches.
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Based on a set of predefined leaf categories and associated documents, a generative

approach generates a hierarchy using clustering algorithms according to certain simi-

larity measures. A method using linear discriminant projection to generate hierarchies

was proposed by Li et al [9]. In this approach, all documents within the hierarchy are

first projected onto a lower dimensional space. Then, the leaf categories are clustered

using hierarchical agglomerative clustering to generate the hierarchy. Instead of build-

ing the hierarchy bottom-up, Punera et al. [17] proposed a hierarchy generation method

using top-down clustering.

Unlike generative approaches, adaptation approaches need an existing hierarchy to

start. Such initial hierarchies are usually built by humans, but could also be those built

by automated methods. The high level idea shared among this category is to make

changes to the existing hierarchy such that classification performed on the adapted hi-

erarchy is more accurate than the original. Peng and Choi [15] proposed an efficient

method to classify a web page into a topical hierarchy and automatically expand the

hierarchy as new documents are added. In order to classify search results into a large

hierarchy accurately and efficiently, a “deep classification” approach is proposed by

pruning the hierarchy into a smaller one before classification is performed [28, 29]. An-

other adaptation approach called “hierarchy adaptation algorithm” [24] is proposed by

Tang et al., in which each node in the hierarchy is checked iteratively, and slight mod-

ifications are then made locally to particular nodes. This approach can also be used to

model dynamic change of taxonomies [23]. Nitta [14] extended this approach to make

it more efficient on large-scale hierarchies. Based on an observation that unnecessarily

deep hierarchies usually do not perform well, Malik [11] proposed a method to “flat-

ten” a hierarchy by promoting low level categories up to the k-th level and removing

the internal nodes.

In summary, approaches in both categories aim to produce hierarchies that are bet-

ter for classification. The adaptation approaches usually require a reasonable initial

hierarchy. In this paper, we will propose a hierarchy adaptation method that does not

rely on a human built hierarchy, and performs better than existing approaches.

3 Approach

3.1 Motivation

As we introduced previously, hierarchical classification can often perform better than

flat classification. The main reason is that, by classifying objects first into high level

categories, and then iteratively into finer-grained subcategories, the classifier at each

branching point should have an easier task than classifying into all categories at once.

However, this is not always true. Consider the example in Figure 1, where class A ∪
B, class C, and class D ∪ E can be easily separated, while separating class A from

class B, class D from class E is comparatively difficult. If a classifier first separates

A ∪ B, C, D ∪ E from each other, then separates A from B, D from E, it should be

easier than classifying all the five classes at once. However, if based on a suboptimal

hierarchy, it first tries to separate A ∪ D from B ∪ C ∪ E, the increased difficulty

may significantly reduce the quality of classification. From this example, we can see
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Figure 1: An imaginary five-class classification problem.

that although hierarchical classification often performs better than flat classification, it

depends on the choice of hierarchy.

In order to further motivate this work using real-world data, we randomly selected

7 leaf categories containing 227 documents from the LSHTC dataset (see Section 4.1

for details about LSHTC dataset), exhaustively generated all the possible hierarchies

based on the selected categories, and tested the classification performance for every

hierarchy. In total, 39,208 hierarchies were generated, out of which 48.2% perform

worse than flat classification in terms of accuracy. The distribution of accuracy is

shown in Figure 2. The top 0.03% of all the hierarchies can achieve 100% accuracy,

with the next 0.03% at 31.6% accuracy. Around 51.7% of the hierarchies perform as

well as flat classification with an accuracy of 27.1%. The rest perform worse than flat

classification. Some even classify all instances incorrectly. This further verifies our

intuition that improving hierarchical classification needs a well-chosen hierarchy. In

the following, we will describe how to adapt genetic algorithms to search for a better

hierarchy.

3.2 Overview

A genetic algorithm (GA) is a search/optimization method that resembles the evolution

process of organisms in nature. Like any other search method, it searches through the

solution space of a problem, looking for an optimal solution. In our problem, we con-

sider each possible hierarchy to be a solution (or an individual in the GA, specifically).

As illustrated previously, our solution space is often too large to perform an exhaustive

search except for very small datasets.

A typical GA usually starts with an initial population of individuals, then iteratively

repeats the following search procedure until the stopping criterion is satisfied. In each

iteration, a subset of individuals is selected for reproduction by applying mutation and
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Figure 2: Distribution of accuracies of all possible hierarchies based on the seven ran-

domly selected leaf categories.

crossover operations on them. Then the fitness of each new individual is evaluated, and

low-fitness individuals are dropped, leaving a better fitted population at the start of next

iteration. In our approach, we will leave the high level procedure of GAs as described

above unchanged, while adapting representation method and reproduction operators to

make them fit the hierarchical classification problem. We chose a GA instead of other

generic search methods for at least two reasons. First, it intrinsically supports large

populations rather than greedy, single path optimization. Second, we can adapt its

reproduction operators to allow significant changes to the solutions without changing

the high level search procedure. In an analysis of experimental results in Section 4, we

will show that the above properties are essential to the performance improvement.

3.3 Hierarchy representation

We start by describing how to represent a hierarchy using a string. In a GA, repro-

duction among the population of a given generation produces the next generation. For

easier reproduction operations and duplicate detection, we need to design a serialized

representation for hierarchies. In our work, each hierarchy is represented as a sequence

of numeric IDs and parentheses, in which each ID corresponds to a leaf category, and

each pair of parentheses represents a more generic category consisting of the categories

in between them. Multiple levels in the hierarchy are reflected using nested parenthe-

ses.

More formally, we represent a hierarchy using the following rules:

1. Each leaf node is represented by its numeric id;

2. Each non-leaf node is represented by a list of all its children nodes enclosed in a
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Figure 3: A small hierarchy example.

pair of parentheses;

3. The hierarchy is represented recursively using Rule 1 and 2.

4. The outermost pair of parentheses is omitted.

Figure 3 illustrates a small example, which will be represented as ( 1 2 5 ) ( ( 3 6 ) 4

).

3.4 Representation string canonicalization

The hierarchy representation method above serializes a hierarchical tree into a sequence

of tokens. However, different representations may correspond to the same hierarchy.

Using the example in Figure 3, ( 1 2 5 ) ( ( 3 6 ) 4 ) and ( 2 1 5 ) ( ( 6 3 ) 4 )

define the same hierarchy. Since we limit the size of the population, detecting dupli-

cate hierarchies not only saves fitness evaluations for already evaluated hierarchies, but

also encourages variety in the population, which is an important factor for performance

improvement as we will show later. Therefore, we need a mechanism to normalize the

representations so that duplicates are easily detected. We call this process canonical-

ization. Two steps of canonicalization are used in our work: trimming and sibling order

canonicalization.

Trimming. We define a trivial node as a node with only one child. Trivial nodes are

not useful in hierarchical classification. We use the following rule to trim the hierarchy

and eliminate trivial nodes: ((St)) =⇒ (St), where St is the representation of a subtree

t.
Sibling order canonicalization. As described earlier, each non-leaf node is rep-

resented by a list of all its children nodes enclosed in a pair of parentheses. In this

list, the order of the nodes is not important, i.e., if the only difference of two repre-

sentation strings is the ordering of sibling nodes, they should be considered the same.
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Figure 4: An example of promotion mutation: promoting Node 5 in Fig. 3.

For any node ni in the hierarchy and the subtree ti rooted at ni, we define the func-

tion smId(ni) as the smallest ID in ti. More formally, for any node ni, smId(ni) is

recursively defined as:

smId(ni) =

{

ni if ni is a leaf

mink:nk⊂ni
smId(nk) otherwise

(1)

where nk is a child of ni. In the representation, ni and its siblings are sorted according

to their smId(·) value. For example, ( 2 1 5 ) ( ( 3 6 ) 4 ) and ( 2 1 5 ) ( 4 ( 3 6 ) )

will both be canonicalized into ( 1 2 5 ) ( ( 3 6 ) 4 ).

3.5 Seed generation

In GA, an initial population needs to be generated before the iterative evolution process

is simulated. In our approach, we use a random algorithm to generate each hierarchy

in the initial population. The pseudocode is shown in Algorithm 1. The algorithm first

sequentially initializes a sequence using integers from 0 to n−1, where n is the number

of leaf categories in the hierarchy. Then, using the Fisher Yates shuffling algorithm

[5], the integers representing each leaf category are randomly shuffled such that each

integer has an equal probability (i.e., 1/n in this case) appearing at any position in the

sequence. After that, k pairs of parentheses are inserted into the sequence at random

positions, where k is a random number between 0 and n− 1.

3.6 Reproduction

3.6.1 Mutation

Mutation is the genetic operator in which an individual is slightly changed to maintain

the diversity of the population. In a typical GA, this is performed by switching a

random bit in the chromosome string. However, this operation is not as straightforward
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Algorithm 1 Algorithm to generate a random hierarchy with n leaf nodes.

1: for i := 0 to n− 1 do

2: sequence[i]← i
3: end for

4:

5: {randomly shuffle the sequence using Fisher Yates shuffling process}
6: for i := n− 1 downto 0 do

7: randomly choose an integer r from the range [0..i], inclusive

8: swap (sequence[i], sequence[r])
9: end for

10:

11: randomly choose an integer k from the range [0..n− 1], inclusive

12: {k will be the number of pairs of parentheses to be inserted}
13:

14: {insert parentheses}
15: for i := 0 to k − 1 do

16: randomly choose two unequal integers pos1 and pos2 from the range

[0..sequence.length], inclusive

17: if pos1 > pos2 then

18: swap (pos1, pos2)

19: end if

20: insert a left parenthesis at pos1 in sequence
21: insert a right parenthesis at pos2 in sequence
22: end for
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Figure 5: An example of grouping mutation: grouping Node 2 and 5 in Fig. 3.

Figure 6: An example of switching mutation: switching Node 5 and 6 in Fig. 3.

in the hierarchical setting. We design three mutation methods that are suitable for

hierarchy evolution: promotion, grouping, and switching.

The promotion operator randomly selects a node n (which can be either a leaf node

or a non-leaf node), and promote n as a child of its grandparent, i.e., n becomes a

sibling of its parent node. For example, promoting Node 5 in Figure 3 generates the

hierarchy in Figure 4. As a special case, promoting the root node results in no change

in the hierarchy. If node n has only one sibling m, then promoting n is equivalent to

promoting m, and also equivalent to promoting both m and n while removing their

parent.

The grouping operator randomly selects two sibling nodes and groups them to-

gether. If a non-leaf node n has k children, C = {ci|i = 1..k}, where k ≥ 2. We

randomly select two nodes cx and cy from c1 through ck, and remove them from C.
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Figure 7: An example of crossover in a generic GA setting.

Then we add a new node cz into C so that cz becomes a child node of n. Finally, we

make cx and cy children of cz . For example, grouping Node 3 and Node 5 in Figure 3

generates the hierarchy in Figure 5.

The switching operator randomly selects two nodes m and n (and the subtrees

rooted at those locations) in the whole hierarchy, and switches their positions. For

example, switching Node 5 and Node 6 in Figure 3 generates the hierarchy in Figure

6. In the above examples, all mutation operations happened at leaf nodes. This is only

for the purpose of easy illustration. The three mutation operators introduced here can

promote, group, or switch non-leaf nodes.

3.6.2 Crossover

Crossover is the genetic operator in which two individuals (parents) are combined to

generate new individuals (children) so that each child will inherit some characteristics

from each parent. In a typical GA, crossover is performed by swapping segments of

the chromosome string between the parents (illustrated in Figure 7). In the hierarchical

setting, however, directly swapping parts of the hierarchy representation will gener-

ate invalid hierarchies. As shown in the example in Figure 8, the resulting hierarchy

representations have missing/duplicate leaf nodes and unmatched pairs of parentheses.

Therefore, we need crossover methods customized for hierarchy evolution.

We used two types of methods: swap crossover and structural crossover. The two

parents are noted as hp1 and hp2, the children hc1 and hc2. In swap crossover, a child

hc1 is generated using the following steps. First a split point p is randomly chosen in

hp1. We note the part starting from the beginning of the representation string to the split

point p as h′

p1
. We remove the segment after p from hp1 and only consider h′

p1
. Then

right parentheses are added at the end to balance with the existing left parentheses.

Suppose S is the set of leaf nodes that appear in h′

p1
; we go through hp2 and remove

all the nodes n if n ∈ S. This removal transforms hp2 into h′

p2
. Finally, h′

p1
and

h′

p2
are concatenated to form hc1. The other child hc2 is generated by switching hp1

and hp2 before applying the above procedure. The above operation guarantees that

the generated children hc1 and hc2 are valid hierarchies while each inherits certain

characteristics from their parents hp1 and hp2. Figure 9 illustrates the process of swap
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Figure 8: Applying the generic crossover operator on hierarchies may generate invalid

offsprings.

Figure 9: An example of swap crossover.

crossover.

A hierarchy can be seen as an integration of two independent characteristics: the

tree structure and the placement of leaf nodes. At a high level, structural crossover

aims to “mix and match” these two factors. A child hierarchy inherits the structural

information from one parent, and placement of leaf nodes from the other. In our im-

plementation, hc1 is generated using the following method. First, every leaf node in

hp1’s representation is replaced with a blank space. Then these blank spaces are filled

with the leaf nodes in hp2 using the order that they appear in hp2. hc2 is generated by

switching hp1 and hp2. Figure 10 illustrates the process of structural crossover. Al-

though the above reproduction operators guarantee the validity of the generated child

hierarchies, they may generate non-canonical representations. Therefore, canonical-

ization is needed after reproduction.
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Figure 10: An example of structural crossover.

3.7 Fitness function

In each iteration of the GA, the individuals (i.e., hierarchies) in the new generation

need to be evaluated. We define the fitness function fit(h) of a hierarchy h simply as

the classification accuracy on h. Given a set of training data Dtrain, validation data

Dvalidation, and the base hierarchical classifier CL,

fit(h) = accuracy(CL(Dtrain), Dvalidation) (2)

where accuracy is defined as the ratio of the correctly classified documents out of all

the documents being classified.

3.8 Stopping criterion

A GA needs a stopping criterion to terminate the iterative evolution process. In our

algorithm, we keep a watch list of top Nwatch best hierarchies. If the performance of

the top hierarchies do not change between two consecutive iterations, the algorithm

stops and outputs the top hierarchies. In the following experiments, we set Nwatch to

5.

4 Experiments

In this section, we test our hierarchy evolution algorithm using real-world data, and

compare its performance with previous methods.

4.1 Experimental setup

In order to test our algorithm, we used three public datasets. The first two datasets are

from the first Large Scale Hierarchical Text Classification (LSHTC) challenge1 held in

2009. We selected a toy dataset from Task 1 with 36 leaf categories and 333 documents,

which will be referred to as LSHTC-a. We also used the dry-run dataset from Task 1,

which has 1,139 leaf categories and 8,181 documents. We will refer to this dataset as

LSHTC-b. Both datasets are partitioned into three subsets: a training set used to train

1http://lshtc.iit.demokritos.gr/node/1
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Category Num. of Documents

course 930

department 182

faculty 1,124

other 3,764

project 504

staff 137

student 1,641

Table 1: Categories and class distribution in WebKB dataset.

Figure 11: The hierarchy automatically generated by Linear Projection (redrawn based

on the experimental result in the LP paper [9]).

classifiers during the training process, a validation set used to estimate the fitness score

of each generated hierarchy, and a test set to evaluate the final output hierarchy. The

third dataset is WebKB2, containing 7 leaf categories and 8,282 documents. The doc-

uments in WebKB dataset are web pages crawled from the following four universities:

Cornell (867 web pages), Texas (827 web pages), Washington (1,205 web pages), and

Wisconsin (1,263 web pages), plus 4,120 web pages from other universities. These

web pages are manually categorized into one of the categories listed in Table 1. On the

split of training and test data, the provider of the dataset suggests “training on three of

the universities plus the misc collection, and testing on the pages from a fourth, held-

out university”. According to this, we performed four-fold cross-validation on WebKB

with a minor adaptation of the split method. Each fold trains on data from two of the

universities plus the “misc” collection (web pages from other universities), validates

on a third university, and tests on a fourth university. LibSVM [3] is used as the base

classifier to implement the standard hierarchical SVM. We used all the default settings

in LibSVM, including the radial basis kernel function as it yields better performance

than linear kernel according to our experiments. In our algorithm, we set the population

size to 100 on LSHTC-a and WebKB, 500 on LSHTC-b.

2http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
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Figure 12: Accuracy on LSHTC datasets compared across different methods.

We compared our approach (Evolution) with two existing state-of-the-art approaches:

a hierarchy adaptation approach called Hierarchy Adjusting Algorithm (HAA) [24],

and a hierarchy generation approach called Linear Projection (LP) [9]. We imple-

mented HAA according to the algorithm outlined in Figures 12 and 13 of [24]. All

three search methods were implemented. In our implementation of HAA, we set the

stopping criterion to 0.001. That is, when the improvement between two consecutive

iterations is less than 0.001, the algorithm terminates. We also compared our algorithm

with Linear Projection on the WebKB dataset. Instead of re-implementing the LP al-

gorithm, we directly used the automatically generated hierarchy on WebKB reported

in the Linear Projection paper, and performed the four-fold cross-validation based on

that hierarchy (shown in Figure 11).

4.2 Experimental results

On the small LSHTC-a dataset, a flat classification has an accuracy of 68.6%. The

hierarchical classification using the original, human-built hierarchy performs slightly

better at 70% accuracy. HAA converged after two iterations with the accuracy im-

proved to 71.9%. Since the initial population in our Hierarchy Evolution algorithm is

generated randomly, we ran our algorithm three times using different random seeds.

The averaged accuracy is 79.5%. On the LSHTC-b dataset, it took 50.3 iterations for

our algorithm to converge (averaged across 6 runs), and 18 iterations for HAA. HAA

improved upon the baseline’s accuracy of 49.6% to 54.0% (an improvement of 8.9%),

while our algorithm’s final output hierarchy has a 56.5% accuracy averaged across 6
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Figure 13: Best accuracy at each iteration.

Figure 14: Average depth and degree of the best-performing hierarchy at each iteration.

runs (an improvement over the baseline of 13.9%). The results are shown in Figure 12.

To be certain of a fair comparison, we let HAA continue running for three more iter-

ations after convergence, but did not observe any additional improvement. Two-tailed

t-tests show that our algorithm outperforms other approaches statistically significant on

both LSHTC datasets (p value≤ 0.02).

When running our algorithm on LSHTC-b, at each iteration, we extracted the best

hierarchy in terms of its classification accuracy on the validation set. For comparison,

we plotted the per-iteration best hierarchy’s accuracy on the validation and test set for

one of the six trials in Figure 13. The validation accuracy increases monotonically until

convergence. Although the test accuracy fluctuates a little, it maintains an increasing

trend in general. Figure 14 shows the average depth and degree of the best-performing

hierarchy at each iteration.

On the WebKB dataset, we compared our algorithm with flat classification, HAA,
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Figure 15: Accuracy on WebKB dataset compared across different methods.

Methods Flat LP HAA Evolution

Fold 1 0.687 0.734 0.742 0.749

Fold 2 0.694 0.721 0.721 0.738

Fold 3 0.691 0.774 0.780 0.788

Fold 4 0.739 0.753 0.774 0.781

Average 0.703 0.746 0.754 0.764

STDEV 0.024 0.023 0.028 0.024

Table 2: Accuracy of each fold on WebKB compared across different methods.

and Linear Projection. Based on the seven leaf categories, a flat classification has an

accuracy of 70.3% averaged across the four folds. Linear Projection and HAA im-

prove the accuracy to 74.6% and 75.4%, respectively. Our algorithm further improves

to 76.4%, a 21% reduction in error rate compared with flat classification. Figure 15

shows the average performance and standard deviation for each method. The variance

is mainly caused by the difference of data across folds. From Table 2, we can see that

our approach consistently performs better than other methods on all folds. Two-tailed

t-tests showed that our algorithm significantly outperforms all other algorithms being

compared, with p-values under 0.03 for all tests. Figure 16 shows the best hierarchy

generated by our algorithm on the first fold of WebKB cross-validation.

4.3 Experiment analysis

As we pointed out previously, our approach differs from existing hierarchy adaptation

approaches from at least two aspects:

1. genetic operators that allow more significant changes in a hierarchy; and,
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Figure 16: The hierarchy automatically generated by our Hierarchy Evolution Algo-

rithm.

2. a larger population size to maintain population variety.

Now we analyze quantitatively whether these differences make our approach outper-

form existing methods. The following analysis is performed on the LSHTC-b dataset.

In order to evaluate the effectiveness of the genetic operators, we calculate the

improvement that each type of operator brings to a hierarchy. Figure 17 shows the

average improvement in terms of accuracy. On average, all the five operators have a

negative impact on the accuracy. For example, the “swap crossover” even decreases

accuracy by 0.018 when averaged across all evolution operations. That is, on average,

every time a “swap crossover” is applied on a hierarchy, the newly generated hierarchy

has an accuracy lowered by 0.018. Fortunately, the genetic algorithm only keeps the

best hierarchies in the population, and discards the rest. Therefore, the degradation is

counter-balanced by such a selection process, making an overall increasing trend (as

we showed previously in experimental results). We also calculated the standard de-

viation of the improvement, as well as minimal and maximal improvement. The error

bars in Figure 17 show the minimal and maximal improvement. The standard deviation

of the operators are 0.0004, 0.0005, 0.0009, 0.0100, 0.0028, respectively. This indi-

cates that the mutation operators only have slight impact on the accuracy while changes

made by crossover are more significant. In the best case, “swap crossover” improved

accuracy by 0.026, “structural crossover” improved 0.029, while all the mutation op-

erators can only improve no more than 0.002 at their best. These statistics match our

intuition that more significant changes can potentially bring better improvements than

local modifications.

Another method to examine the utility of different genetic operators is to use only

a subset of the operators in our algorithm and check the accuracy of the final output

hierarchy. The result of this analysis on LSHTC-a is shown in Figure 18. Using all

operators yields a 80% accuracy as the algorithm converges after 7 iterations. Using

both crossover operators without any mutation yields the same accuracy with a slightly

slower convergence speed (8 iterations). Using structural crossover only, we can still

discover a hierarchy with the same accuracy at 80%, but at a cost of two more additional

iterations (10 iterations until convergence). Using swap crossover only, the algorithm
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Figure 17: Improvement compared across different genetic operators.

converges after 9 iterations with an accuracy of 77%. If we take out both crossover op-

erators and only use mutation operators, the performance of the final output hierarchy

is significantly decreased down to 73%.

Unlike previous approaches that only carry the best hierarchy into the next iteration,

we keep hundreds of hierarchies in the population. This raises a reasonable concern

about our approach: is the large population necessary? To answer this question, we first

identified the top 5 hierarchies at each iteration, then back-traced their parents from the

previous iteration, and finally found out the ranks for their parents. The results are

shown in Figure 19. A point (x,y) means that if we were to keep only top x hierarchies

in the previous generation, then only a percentage of y hierarchies that were in the top

5 of the next generation still exist. In other words, the rest of top hierarchies (i.e., 1-y)

will no longer exist because their parents were removed from the previous generation.

We can see that we can still generate a significant portion of top hierarchies by keeping

300 hierarchies in each iteration. From another point of view, if we were to keep

only 50 hierarchies, we would have lost approximately 81% of the top 5 hierarchies at

each iteration. Although we could probably shrink the population size by 20% without

significant degradation in accuracy, this supports the idea that the comparatively large

population is necessary. In order to further verify this conjecture, we performed the

experiments again based on various population sizes from 100 to 500, and compared

the test accuracy across the final output hierarchies. Figure 20 shows that increasing the

population size from 100 to 400 gives a significant improvement in terms of accuracy

on the final output hierarchy, while no additional benefit is perceived beyond the size

of 400.

An additional experiment with respect to the usefulness of a large population size

is performed on LSHTC-a dataset. In this experiment, instead of running HAA from a

single initial hierarchy (i.e., the original, human created hierarchy), we ran HAA 100

times, with each trial starting from a randomly generated hierarchy. We controlled the
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Figure 18: Accuracy comparison using different subsets of genetic operators.

Figure 19: Top hierarchies that can be generated when a smaller population size is

used.
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Figure 20: Classification accuracy on the output best hierarchy when varying popula-

tion size.

random hierarchy generation process so that the 100 initial hierarchies are exactly the

same as the initial population previously generated in the first trial of our Hierarchy

Evolution algorithm. The purpose of this experiment is twofold: to test how much a

large population contributes to finding a better solution, and to provide a fair compari-

son between HAA and our approach. Among the 100 trials, the best hierarchy found by

HAA has a 74.3% accuracy on the test set (with an average accuracy of 69% across all

trials). In comparison, the first trial of our algorithm found a best hierarchy with 80%

accuracy. The result indicates that, although the contribution from the large population

is clearly visible, it is the combination of the two factors that make our algorithm better

than previous methods: a large population and the new genetic operators.

5 Discussion and Conclusion

Compared with previous approaches, our method explores a much larger space search-

ing for better hierarchies. Although this enables us to find better solutions, it also brings

significant cost. At each iteration, our approach evaluates thousands of hierarchies.

Fortunately, the evaluation can be easily parallelized. Using a Condor [25] distributed

computing platform running on around 100 nodes shared with multiple users, each it-

eration on the LSHTC-b dataset can be finished within approximately 2.5 hours in real

elapsed time. For the additional improvement in classification performance, we con-

sider this extra one-time cost worthwhile. The evaluation cost can be reduced using less

expensive, approximate fitness evaluations. For example, smaller training and valida-

tion sets, and fast classifiers can be used in the evaluation process. Furthermore, since

some generated hierarchies share common subtrees, trained models on such subtrees
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can be reused.

In this paper, we proposed a hierarchy adaptation approach by using the standard

mechanisms of a genetic algorithm along with special genetic operators customized

for hierarchies. Unlike previous approaches which only keep the best hierarchy in the

search process and modify the hierarchy locally at each step, our approach maintains

population variety by allowing simultaneous evolution of a much larger population,

and enables significant changes during evolution. Experiments on multiple classifi-

cation tasks showed that the proposed algorithm can significantly improve automatic

classification, outperforming existing state-of-the-art approaches. Our analysis showed

that the variety in population and customized reproduction operators are important to

improvement in classification performance.

One drawback of our approach is that the genetic operators select mutation points

and split points purely at random. Smarter operators may select such points based on

heuristic rules so that they are more likely to generate better hierarchies.

The choice of genetic operators is quite arbitrary and primitive. Although those

operators are shown to be effective through our experiments, they are probably not the

best or the only effective operators for the problem. Are there other operators that can

work effectively on the problem? Are there better operators? Besides those discussed

in this paper, what other properties are shared among good operators? A comprehensive

operator study is needed to answer these questions.

In our experiments, the parameters of the GA were arbitrarily assigned, and re-

mained constant over the search process. Genetic algorithms with adaptive parameters

(adaptive GA) [21] may bring further improvement. In addition, if the solutions are

confined to binary trees, it may change the speed of fitness evaluation and the rate of

convergence. Therefore, additional modifications to our algorithm might be necessary.
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