
Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

CSE 265: CSE 265:
System and Network AdministrationSystem and Network Administration

● Controlling Processes
– Components of a process
– Life cycle of a process
– Signals
– Send signals using kill and killall
– Process states
– Influence scheduling priority with nice and renice
– Monitoring processes with ps and top
– Runaway processes
– Periodic processes

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Components of a processComponents of a process

– A process is the instantiation of a program

– From the kernel's perspective, a process is:
● An address space (the set of memory pages with code,

libraries, and data)
● Set of data structures (within the kernel)

– The process's address space map
– Current status
– Execution priority
– Resources used
– Signal mask (which signals are blocked)
– The owner
– Which instructions are currently being executed

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Process attributesProcess attributes

● Process ID – PID
– Unique identifier, wraps around

● Parent PID – PPID
– When a process is cloned, there is a parent and a child

● Real and effective user ID – UID and EUID
– EUID is used to determine what permissions the process has
– Also records original EUID (saved UID)

● Can be re-accessed later in program (even after changing EUID)
● Real and effective group ID – GID and EGID
● Niceness

– The CPU time available depends on its scheduling priority
– Users can make their processes 'nicer' to the rest of the system

● Control terminal – where stdin, stdout, stderr are attached

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Process life cycleProcess life cycle

– An existing process calls fork(2)
● Parent is told PID of child
● Child process is told 0

– Child can use exec (or similar) to start a new program

– When ready to die, process calls _exit(2) with exit code
● Process becomes a zombie

– Parent must wait(2) to collect status of dead children
● Resource usage, why killed

– Orphans are re-mapped to init

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

SignalsSignals

● Signals are process-level interrupt requests
● Uses

– Inter-process communication

– Terminal driver can kill, interrupt or suspend
processes (Ctrl-C, Ctrl-Z)

– Can be sent by admin (with kill) for various purposes

– Can be sent by kernel when process breaks a rule
● e.g., division by zero

– Can be sent by kernel for i/o available, death of child

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Handling signalsHandling signals

– Process can designate a signal handler for a
particular signal

– If no handler, kernel takes some default action

– When handler is finished catching signal, execution
continues where the signal was received

– Process can request that particular signals be
ignored, or blocked

– If signal is received while blocked, one instance of
that signal is buffered until it is unblocked

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Important signalsImportant signals

Name Description Default Catch? Block? Dump?
1 HUP Hangup Terminate Yes Yes No
 Reset request; clean up process on terminal (modem hangup)
 *csh processes ignore HUP; bash users need nohup command
2 INT Interrupt Terminate Yes Yes No
 Control-C, can catch and clean up before quiting.
3 QUIT Quit Terminate Yes Yes Yes
 Similar to TERM, but generates a core dump
9 KILL Kill Terminate No No No
 Never received by process; OS terminates process.
* BUS Bus error Terminate Yes Yes Yes
 Error signal. Typically a memory alignment problem.
11 SEGV Segmentation Fault Terminate Yes Yes Yes
 Error signal. Typically a memory access to protected space.

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

More signalsMore signals

Name Description Default Catch? Block? Dump?
15 TERM Software termination Terminate Yes Yes No
 Request to terminate execution. Process can clean up, exit.
* STOP Stop Stop No No No
 OS suspends execution of process until CONT received.
* TSTP Keyboard stop Stop Yes Yes Yes
 Keyboard Ctrl-Z request to stop. Catchable.
* CONT Continue after stop Ignore Yes No No
 Continue after STOP or TSTP.
* WINCH Window changed Ignore Yes Yes No
 Sent by terminal emulator when config changes (resize)
* USR1 User-defined Terminate Yes Yes No
 User defined. Apache restarts gracefully.
* USR2 User-defined Terminate Yes Yes No

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Sending signalsSending signals

kill [-signal] pid

kill sends TERM signal by default

kill -9 pid === kill -KILL pid
– “Guarantees” that the process will die

kill -USR1 910 3044

sudo killall -USR1 httpd
– killall removes need for pid

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Process statesProcess states

● Process exist in one of four states
– Runnable – can be executed

– Sleeping – waiting for some resources
● Gets no CPU time until resource is available

– Zombie – trying to die (parent hasn't waited)

– Stopped – process is suspended (i.e., not
permitted to run)

● Like sleeping, but can't wake until CONT received

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Scheduling priorityScheduling priority

– “Niceness” is hint to kernel about how often to
schedule the process

– Linux ranges from -20 (high priority, not nice) to +19
(low priority, very nice), 0 is default

– User/process can raise, but not lower niceness
● Root can lower

– Examples
% nice +5 ~/bin/longtask

% renice -5 8829

% sudo renice 5 -u boggs

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Monitoring processes: psMonitoring processes: ps

● /bin/ps primary tool
● Shows

– PID, UID, priority, control terminal

– Memory usage, CPU time, status

● Multiple variations of ps
– ps -aux (BSD, Linux)

– ps -Af (Solaris)

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Example ps outputExample ps output
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 1364 64 ? S 2003 3:03 init [5] --init
root 2 0.0 0.0 0 0 ? SW 2003 1:35 [keventd]
root 3 0.0 0.0 0 0 ? SWN 2003 0:27 [ksoftirqd_CPU0]
root 5 0.1 0.0 0 0 ? SW 2003 465:05 [kswapd]
root 6 3.0 0.0 0 0 ? SW 2003 7754:49 [kscand]
root 7 0.0 0.0 0 0 ? SW 2003 1:16 [bdflush]
root 8 0.0 0.0 0 0 ? SW 2003 4:06 [kupdated]
root 9 0.0 0.0 0 0 ? SW< 2003 0:00 [mdrecoveryd]
root 13 0.0 0.0 0 0 ? SW 2003 16:12 [kjournald]
root 92 0.0 0.0 0 0 ? SW 2003 0:00 [khubd]
root 589 0.0 0.0 0 0 ? SW 2003 0:01 [eth0]
root 761 0.0 0.0 1424 340 ? S 2003 0:48 syslogd -m 0
root 766 0.0 0.0 1364 244 ? S 2003 0:00 klogd -x
rpc 786 0.0 0.0 1524 360 ? S 2003 0:22 portmap
rpcuser 814 0.0 0.0 1660 484 ? S 2003 1:27 rpc.statd
ntp 933 0.0 0.0 1884 1880 ? SL 2003 11:18 ntpd -U ntp -g
root 1045 0.0 0.0 2140 164 ? S 2003 0:00 xinetd -stayalive
root 1092 0.0 0.0 1796 176 ? S 2003 0:00 rpc.rquotad
root 1097 0.1 0.0 0 0 ? SW 2003 267:24 [nfsd]
root 1105 0.0 0.0 0 0 ? SW 2003 0:05 [lockd]
root 1113 0.0 0.0 1960 608 ? S 2003 0:02 rpc.mountd
root 1209 0.0 0.0 1560 288 ? S 2003 1:14 crond
daemon 1383 0.0 0.0 1408 200 ? S 2003 0:00 /usr/sbin/atd
root 1456 0.0 0.0 1348 116 tty2 S 2003 0:00 /sbin/mingetty tt

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Monitoring processes: topMonitoring processes: top

● /usr/bin/top is optional in some OSes
● Shows top-n CPU-using processes

– Plus other stats, like memory usage and
availability, system load

– Can renice within top

– Automatically refreshes screen every 5 seconds

– Can focus on a particular user

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Sample top outputSample top output

top - 20:30:57 up 1 day, 22:48, 15 users, load average: 0.04, 0.07, 0.05
Tasks: 163 total, 1 running, 162 sleeping, 0 stopped, 0 zombie
Cpu(s): 4.7%us, 1.5%sy, 0.0%ni, 93.5%id, 0.0%wa, 0.2%hi, 0.2%si, 0.0%st
Mem: 2073964k total, 1525460k used, 548504k free, 200188k buffers
Swap: 4194296k total, 0k used, 4194296k free, 798200k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 5792 brian 15 0 362m 196m 27m S 5 9.7 172:39.93 firefox-bin
 5540 brian 15 0 17984 9112 6532 S 3 0.4 0:49.05 metacity
 5406 root 15 0 136m 107m 11m S 3 5.3 44:58.77 Xorg
10001 brian 15 0 104m 27m 15m S 0 1.4 0:52.50 rhythmbox
17511 brian 15 0 2168 1040 792 R 0 0.1 0:00.01 top
25759 root 5 -10 508m 158m 154m S 0 2.0 74:54.98 vmware-vmx
17124 hadoop 21 0 1207m 15m 2716 S 0 0.2 7:46.71 java
17231 hadoop 15 0 1204m 12m 1304 S 0 0.2 1:55.97 java
25370 root 15 0 382m 4976 2428 S 0 0.1 7:50.96 vmplayer
 2513 ntp 15 0 19116 4808 3716 S 0 0.1 0:04.37 ntpd
23138 root 15 0 84980 3184 2492 S 0 0.0 0:00.03 sshd
 3184 root 12 -3 120m 1764 1196 S 0 0.0 0:01.83 python
 1 root 15 0 2044 640 552 S 0 0.0 0:02.74 init
 2 root RT 0 0 0 0 S 0 0.0 0:00.00 migration/0
 3 root 34 19 0 0 0 S 0 0.0 0:00.00 ksoftirqd/0
 4 root RT 0 0 0 0 S 0 0.0 0:00.00 watchdog/0
 5 root RT 0 0 0 0 S 0 0.0 0:00.00 migration/1

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Runaway processesRunaway processes

● What can you do about processes using an
unusual amount of resources (memory, CPU,
disk space)?
– Identify resource hogs using top and/or ps

– Contact owner and ask about resource usage

– Suspend using STOP signal (might break job)
● Contact owner, restart or kill later

– Renice CPU hog

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Creating periodic processesCreating periodic processes

● Automation, as you've heard, is key to efficiency
● Instead of manually performing tasks daily,

weekly, or monthly, you can schedule them
– cron

– anacron

● Includes tasks like:
– monitoring, log rotation, backups, file distribution

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

croncron
– cron daemon performs tasks at scheduled times

– crontab files are examined by cron for schedule
● /etc/crontab, /etc/cron.d/*, /var/spool/cron/*

– cron wakes up each minute and checks to see if
anything needs to be executed

– cron is susceptible to changes in time
● doesn't compensate for when machine is down, or time

changes (clock adjustments or daylight savings time) that are
sufficiently large (3 hours, at least for some implementations)

– anacron works daily
● records when task last performed, and will catch up with

missing time

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

crontab filescrontab files
– Filename provides username in /var/spool/cron/

– Example crontab entries:
run make at 2:30 each Monday morning
30 2 * * 1 (cd /home/joe4/project; make)
remove files in /tmp not accessed in 3 days
20 1 * * * find /tmp -a atime +3 -exec rm -f {} ';'
run system activity accounting tool every 10 minutes
*/10 * * * * root /usr/lib/sa/sa1 1 1

http://www.notesbit.com/index.php/scripts-unix/crontab-quick-complete-reference-setting-up-cronjobs-in-unix-and-linux/

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Managing crontabsManaging crontabs

● Use crontab -e to edit
– Checks out a copy

– Uses EDITOR environment variable

– Resubmits it to the /var/spool/cron/ directory

● crontab -l will list the contents to stdout
● /etc/cron.allow and /etc/cron.deny can control

access to cron facilities

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Using cronUsing cron

– Distributions set up crontab entries to automatically
run scripts in

● /etc/cron.monthly/
● /etc/cron.weekly/
● /etc/cron.daily/
● /etc/cron.hourly/

– Typical tasks:
● Cleaning the filesystem (editor files, core files) using find
● Distributing files (mail aliases, sendmail config, etc.) using

rsync, rdist, or expect
● Log rotation

	Welcome
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

