CSE 265:
System and Network Administration

« Controlling Processes
- Components of a process
- Life cycle of a process
- Signals
- Send signals using kill and killall
- Process states
- Influence scheduling priority with nice and renice
- Monitoring processes with ps and top
- Runaway processes
- Periodic processes

Components of a process

- A process is the instantiation of a program

- From the kernel's perspective, a process is:

* An address space (the set of memory pages with code,
libraries, and data)

« Set of data structures (within the kernel)

- The process's address space map

- Current status

- Execution priority

- Resources used

- Signal mask (which signals are blocked)

- The owner

- Which instructions are currently being executed

Process attributes

e Process ID — PID
- Unique identifier, wraps around
« Parent PID — PPID
- When a process is cloned, there is a parent and a child

 Real and effective user ID — UID and EUID

- EUID is used to determine what permissions the process has
- Also records original EUID (saved UID)
« Can be re-accessed later in program (even after changing EUID)

» Real and effective group ID — GID and EGID
* Niceness

- The CPU time available depends on its scheduling priority
- Users can make their processes 'nicer' to the rest of the system

 Control terminal — where stdin, stdout, stderr are attached

Process life cycle

- An existing process calls fork(2)

e Parent is told PID of child
e Child process is told 0

- Child can use exec (or similar) to start a new program

- When ready to die, process calls _exit(2) with exit code
* Process becomes a zombie

- Parent must wait(2) to collect status of dead children
 Resource usage, why killed

- Orphans are re-mapped to init

Signals

» Signals are process-level interrupt requests
 Uses

- Inter-process communication

- Terminal driver can Kill, interrupt or suspend
processes (Ctrl-C, Ctrl-Z)

- Can be sent by admin (with kill) for various purposes

- Can be sent by kernel when process breaks a rule
 e.g., division by zero
- Can be sent by kernel for i/o available, death of child

Handling signals

- Process can designate a signal handler for a
particular signal

- If no handler, kernel takes some default action

- When handler is finished catching signal, execution
continues where the signal was received

- Process can request that particular signals be
ignored, or blocked

- If signal is received while blocked, one instance of
that signal is buffered until it is unblocked

- [

11

Important signals

Name Description Default Catch? Block? Dump?

HUP Hangup Terminate Yes Yes No
Reset request; clean up process on terminal (modem hangup)
*csh processes ignore HUP; bash users need nohup command

INT Interrupt Terminate Yes Yes No
Control-C, can catch and clean up before quiting.

QUIT Quit Terminate Yes Yes Yes
Similar to TERM, but generates a core dump

KILL Kill Terminate No No No
Never received by process; OS terminates process.

BUS Bus error Terminate Yes Yes Yes
Error signal. Typically a memory alignment problem.

SEGV Segmentation Fault Terminate Yes Yes Yes

Error signal. Typically a memory access to protected space.

B

15

More signals

Name Description Default Catch? Block? Dump?
TERM Software termination Terminate Yes Yes No
Request to terminate execution. Process can clean up, exit,

STOP Stop Stop No No No
OS suspends execution of process until CONT received.

TSTP Keyboard stop Stop Yes Yes Yes
Keyboard Ctrl-Z request to stop. Catchable.

CONT Continue after stop Ignore Yes No No
Continue after STOP or TSTP.

WINCH Window changed Ignore Yes Yes No
Sent by terminal emulator when config changes (resize)

USR1 User-defined Terminate Yes Yes No

User defined. Apache restarts gracefully.
USR2 User-defined Terminate Yes Yes

No

Sending signals

kill [-signal] pid
Kill sends TERM signal by default
Kill -9 pid === Kkill -KILL pid

- “Guarantees” that the process will die

kill -USR1 910 3044

sudo killall -USR1 httpd
- killall removes need for pid

Process states

e Process exist in one of four states

- Runnable — can be executed

- Sleeping — waiting for some resources
» Gets no CPU time until resource is available
- Zombie — trying to die (parent hasn't waited)

- Stopped — process is suspended (i.e., not
permitted to run)

* Like sleeping, but can't wake until CONT received

Scheduling priority

- “Niceness” is hint to kernel about how often to
schedule the process

- Linux ranges from -20 (high priority, not nice) to +19
(low priority, very nice), 0 is default

- User/process can raise, but not lower niceness
* Root can lower
- Examples

% nice +5 ~/bin/longtask
% renice -5 8829
% sudo renice 5 -u boggs

Monitoring processes: ps

* /bin/ps primary tool
 Shows
- PID, UID, priority, control terminal
- Memory usage, CPU time, status
* Multiple variations of ps
- ps -aux (BSD, Linux)
- ps -Af (Solaris)

Example ps output

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 1364 64 ? S 2003 3:03 init [5] --init
root 2 0.0 0.0 0 O SW 2003 1:35 [keventd]

root 3 0.0 0.0 0 0 ? SWN 2003 0:27 [ksoftirqd CPUO]
root 5 0.1 0.0 0 0 ? SW 2003 465:05 [kswapd]

root 6 3.0 0.0 0) 0 ? SW 2003 7754:49 [kscand]

root 7 0.0 0.0 0 0 ? SW 2003 1:16 [bdflush]

root 8 0.0 0.0 0 0 ? SW 2003 4:06 [kupdated]

root 9 0.0 0.0 0 0 ? SW< 2003 0:00 [mdrecoveryd]
root 13 0.0 0.0 0) 0 ? SW 2003 16:12 [kjournald]

root 92 0.0 0.0 0] 0 ? SW 2003 0:00 [khubd]

root 589 0.0 0.0 0] 0 ? SW 2003 0:01 [ethO]

root 761 0.0 0.0 1424 340 ? S 2003 0:48 syslogd -m O

root 766 0.0 0.0 1364 244 7 S 2003 0:00 klogd -x

rpc 786 0.0 0.0 1524 360 ? S 2003 0:22 portmap

rpcuser 814 0.0 0.0 1660 484 ? S 2003 1:27 rpc.statd

ntp 933 0.0 0.0 1884 1880 ? SL 2003 11:18 ntpd -U ntp -g
root 1045 0.0 0.0 2140 164 ? S 2003 0:00 xinetd -stayalive
root 1092 0.0 0.0 1796 176 ? S 2003 0:00 rpc.rquotad

root 1097 0.1 0.0 0] 0 ? SW 2003 267:24 [nfsd]

root 1105 0.0 0.0 0 O SW 2003 0:05 [lockd]

root 1113 0.0 0.0 1960 608 ? S 2003 0:02 rpc.mountd

root 1209 0.0 0.0 1560 288 ? S 2003 1:14 crond

daemon 1383 0.0 0.0 1408 200 ? S 2003 0:00 /usr/sbin/atd
root 1456 0.0 0.0 1348 116 tty?2 S 2003 0:00 /sbin/mingetty tt

Monitoring processes: top

 /usr/bin/top is optional in some OSes
* Shows top-n CPU-using processes

- Plus other stats, like memory usage and
availability, system load

- Can renice within top
- Automatically refreshes screen every 5 seconds
- Can focus on a particular user

Sample top output

top - 20:30:57 up 1 day, 22:48, 15 users, 1load average: 0.04, 0.07, 0.05
Tasks: 163 total, 1 running, 162 sleeping, 0 stopped, © zombie

Cpu(s): 4.7%us, 1.5%sy, 0.0%ni, 93.5%id, 0.0%wa, 0.2%hi, 0.2%si, 0.0%st
Mem: 2073964k total, 1525460k used, 548504k free, 200188k buffers

Swap: 4194296k total, Ok used, 4194296k free, 798200k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
5792 brian 15 © 362m 196m 27m S 5 9.7 172:39.93 firefox-bin
5540 brian 15 © 17984 9112 6532 S 3 0.4 0:49.05 metacity
5406 root 15 © 136m 107m 11m S 3 5.3 44:58.77 Xorg
10001 brian 15 © 104m 27m 15m S O 1.4 0:52.50 rhythmbox
17511 brian 15 © 2168 1040 792 R O 0.1 0:00.01 top
25759 root 5 -10 508m 158m 154m S © 2.0 74:54.98 vmware-vmx
17124 hadoop 21 © 1207m 15m 2716 S © 0.2 7:46.71 java
17231 hadoop 15 © 1204m 12m 1304 S O 0.2 1:55.97 java
25370 root 15 © 382m 4976 2428 S 0O 0.1 7:50.96 vmplayer
2513 ntp 15 © 19116 4808 3716 S O 0.1 0:04.37 ntpd
23138 root 15 © 84980 3184 2492 S © 0.0 0:00.03 sshd
3184 root 12 -3 120m 1764 1196 S © 0.0 0:01.83 python
1 root 15 © 2044 640 552 S © 0.0 0:02.74 init
2 root RT 0 © 0 O S 0O 0.0 0:00.00 migration/0
3 root 34 19 0 0 (O 0O 0.0 0:00.00 ksoftirqd/0O
4 root RT 0 0 0 (O O 0.0 0:00.00 watchdog/0
5 root RT 0 0 0 0 S 0O 0.0 0:00.00 migration/1

Runaway processes

* \WWhat can you do about processes using an
unusual amount of resources (memory, CPU,
disk space)?

- ldentify resource hogs using top and/or ps
- Contact owner and ask about resource usage

- Suspend using STOP signal (might break job)

o Contact owner, restart or kill later

- Renice CPU hog

Creating periodic processes

« Automation, as you've heard, is key to efficiency

* Instead of manually performing tasks daily,
weekly, or monthly, you can schedule them

— Ccron
— danacron

e |ncludes tasks like:
- monitoring, log rotation, backups, file distribution

cron

cron daemon performs tasks at scheduled times

crontab files are examined by cron for schedule
* /etc/crontab, /etc/cron.d/*, /var/spool/cron/*

cron wakes up each minute and checks to see if
anything needs to be executed

cron is susceptible to changes in time

» doesn't compensate for when machine is down, or time
changes (clock adjustments or daylight savings time) that are
sufficiently large (3 hours, at least for some implementations)

anacron works daily

» records when task last performed, and will catch up with
missing time

crontab files

- Filename provides username in /var/spool/cron/
- Example crontab entries:

run make at 2:30 each Monday morning
30 2 * * 1 (cd /home/joed/project; make)

EXECUTE BACKUP.SH SCRIPT EVERY SUNDAY AT 2:36 AM
36 2 * * 7 root /usr/local/sbin/backup.sh

o W e - COMMAND TO EXECUTE
181 112 07 | EXECUTE COMMAND AS A USER ROOT

. Sunday =0, Monday =1, Tuesday=2, Wednesday=3
- DAY OF “Em Thursday=4, Friday=>5, Saturday=6, Sunday=7

Mﬂ January =1, February=2, March=3, April=4, May=5, June=6
= J July=7, August=8, September=9, October=10, November=11, December=12

- DAY OF MONTH

http://www.notesbit.com/index.php/scripts-unix/crontab-quick-complete-reference-setting-up-cronjobs-in-unix-and-linux/

Spring 2016 CSE 265: System and Network Administration ©2004-2016 Brian D. Davison

Managing crontabs

 Use crontab -e to edit

- Checks out a copy
- Uses EDITOR environment variable
- Resubmits it to the /var/spool/cron/ directory

o crontab -l will list the contents to stdout

» /etc/cron.allow and /etc/cron.deny can control
access to cron facilities

Using cron

- Distributions set up crontab entries to automatically
run scripts in
* /etc/cron.monthly/
* /etc/cron.weekly/
* /etc/cron.daily/
* /etc/cron.hourly/

- Typical tasks:

» Cleaning the filesystem (editor files, core files) using find

* Distributing files (mail aliases, sendmail config, etc.) using
rsync, rdist, or expect

 Log rotation

	Welcome
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

