

Character Sets

Original by Jarret Raim, Spring 2004
Updated and expanded, 2007-2013

Characters, bytes, storage & display

 We've talked about characters and strings
 We know how to

Find out how much storage they require
Write them to a file
Write them to the screen

Characters, bytes, storage & display

 What happens when you want to write
mathematical symbols like ╞,√,∞, and ∑

 Or characters from other languages, such
as غقẺ,Б,ć, and ö

 Such characters are outside the ASCII
codes, and may require more screen space
to print and more storage space

Definitions

 Character Repertoire
A set of characters where no internal presentation

in computers or data transfer is assumed.
Does not define an ordering for the characters.
Usually defined by specifying names of

characters and a sample (or reference)
presentation of characters in visible form.

Definitions

 Character Code
Defines a one-to-one correspondence between

characters in a repertoire and a set of
nonnegative integers, called a code position.

Aka: code number, code value, code element,
code point, code set value - and just code.

Note: The set of nonnegative integers
corresponding to characters need not consist of
consecutive numbers.

Definitions

 Character Encoding
 A method (algorithm) for presenting characters in

digital form by mapping sequences of code numbers
of characters into sequences of octets.

 In the simplest case, each character is mapped to an
integer in the range 0 - 255 according to a character
code and these are used as such as octets.

 Eg: 7-bit ASCII, 8-bit ASCII, UCS, Unicode, UTF-6,
UTF-16, etc.

ASCII & Friends

 The original ASCII is
a 7-bit encoding using
0-127 to define basic
US characters

 ISO Latin 1 is ASCII
with European
characters. (8-Bit)

 Contain control codes
as well as text.

More ASCII Love

 Even basic 7-bit ASCII is not
safe
 Many “national variants” of ASCII

replace some characters with
international ones.

 Safe ASCII Characters
 0-9
 A-Z and a-z
 ! " % & ' () * + , - . / : ; < = > ?
 Space

Other Ridiculousness

 Other 8-Bit ASCII Extensions
DOS Code Pages
Macintosh Character Codes
 IBM’s EBCDIC (Mainframes)

 Windows did not conform to any known
standards until NT switched over to using
Unicode encoded as UTF-16.

The Solution: Unicode

 Unicode is a practical
description of the ISO
10646 standard known as
UCS or the Universal
Character Set.

 Up to 1,112,064 characters
can be encoded.

 As of Oct 2010, there were
>109K characters (Unicode
6.0).

 The encoding is not defined
 Several implementations

Encodings For Unicode

 Most Common: UTF-8
 Character codes less than 128 (effectively, the ASCII repertoire)

are presented "as such", using one octet for each code.
 All codes with the high bit set to 1 (i.e., not ASCII) link to a

mechanism for rendering Unicode characters with up to 6 octets.
 Allows space savings and compatibility at the cost of

implementation complexity.

Unicode Complexity

 Characters can be encoded multiple ways.
 Π is encoded as:

 GREEK_CAPITAL_LETTER_PI
 N_ARY_PRODUCT

 Ä can be encoded as:
 LATIN CAPITAL LETTER A WITH DIAERESIS
 The symbol A with a link to the umlaut diacritic

 All characters can be represented by the
U+nnnn notation.

 Other Implementations
 UCS-2, UCS-2BE, UCS-2LE, UCS-4, UCS-4LE,

UCS-4BE, UTF-8, UTF-16, UTF-16BE, UTF-16LE,
UTF-32, UTF-32BE, UTF-32LE

Unicode Implementation

 Level 1
 Combining characters and Hangul Jamo characters

are not supported. [Hangul Jamo are required to fully
support the Korean script including Middle Korean.]

 Level 2
 Like level 1, except limited combining characters are

supported for some languages.
 Level 3

 All UCS characters are supported, such that, for
example, mathematicians can place a tilde or an
arrow (or both) on any character.

Programming Languages

 Special Data Types for Unicode
 Ada95, Java, TCL, Perl, Python, C# and others.

 ISO C 90
 Specifies mechanisms to handle multi-byte encoding

and wide characters.
 The type wchar_t, usually a signed 32-bit integer, can

be used to hold Unicode characters.
 ISO C 99

 Some problems with backwards compatibility.
 The C compiler can signal to an application that

wchar_t is guaranteed to hold UCS values in all
locales.

Using Unicode in Linux

 Most distributions have standardized on UTF-8.
 Good performance requires hand tuning for

UTF-8
 Grep without hand tuning was 100x slower in multi-

byte mode than in single-byte mode.

Using Unicode

 Libraries must support Unicode formats.
 New strlen() definitions:

 Number of bytes (UTF-8 can still use regular strlen())
 Number of characters
 Display width (# of cursor positions)

 Examples
 u8_strlen(), u8_printf()

 Application must pay attention to the locale
setting for UTF-8 activation.

Unicode Functions

 Setting the locale
 setlocale (LC_NUMERIC,

"Germany");

 Defines all numbers
returned from libc to use
German notation.

 No more reliance on the
underlying numerical
representation of ASCII.

BAD: l = c - 'A' + 'a';

GOOD: l = tolower(c);

 gettext() returns the
translations of strings in a
message database.

/* get the translation for a string
corresponding to a greeting
(perhaps “Hello world!”) */
printf(gettext("greeting"));

Supporting i18n in C

 There are many new macros and system
calls to support wide and multi-byte
characters

wprintf(L"%1$d:%2$.*3$d:%4$.*3$d\n",
hour, min, precision, sec);

 See wide.c for another example.

Unicode on the Web

 Should be specified in a MIME header for ALL
communications internal and external.
 The header is sent in ASCII (UTF-8)
X-Mailer: Mozilla 4.0 [en] (Win95; I) MIME-Version: 1.0
To: someone@cs.tut.fi
Subject: Test
X-Priority: 3 (Normal)
Content-Type: text/plain; charset=x-UNICODE-2-0-UTF-7
Content-Transfer-Encoding: 7bit

HTTP/1.1 200 OK
Date: Wed, 25 Apr 2007 01:23:32 GMT
Server: Apache/2.0.54 (Fedora)
Last-Modified: Wed, 04 Apr 2007 15:03:37 GMT
ETag: "242873-1b55-c2456440"
Content-Length: 6997
Connection: close
Content-Type: text/html; charset=UTF-8

Unicode in DNS

 DNS only supports ASCII domain names.
 IDNA is a system to allow international

characters to be used in domains names.
Converts Unicode characters into ASCII for

DNS.
 In 2010, >20 countries requested IDN ccTLDs

(including in Arabic, Chinese, Russian & Thai)
A number have been approved; some are

operational (Egypt, Saudi Arabia, Russia, etc.)

Conclusions

 Unicode is complex, but using UTF-8 allows a
programmer to get many of the benefits of
internationalization for free.

 Using STL data structures and other Unicode
aware libraries will significantly reduce the pain
of using Unicode (kiss char* goodbye).

 Assume that there will be difficulties with
internationalization.

Sources

 Quick Overview
 http://www.linuxjournal.com/article/3327

 Sun’s Internationalization Reference
 http://developers.sun.com/dev/gadc/educationtutorial/creference/

 Programming for Internationalization FAQ
 http://faqs.cs.uu.nl/na-dir/internationalization/programming-faq.html

 UTF-8 and Unicode FAQ
 http://www.cl.cam.ac.uk/~mgk25/unicode.html

 Plus many more.

http://www.linuxjournal.com/article/3327
http://developers.sun.com/dev/gadc/educationtutorial/creference/
http://faqs.cs.uu.nl/na-dir/internationalization/programming-faq.html
http://www.cl.cam.ac.uk/~mgk25/unicode.html

	Character Sets Logins & Terminal Types
	Slide 2
	Slide 3
	Definitions
	Slide 5
	Slide 6
	ASCII & Friends
	More ASCII Love
	Other Ridiculousness
	The Solution: Unicode
	Encodings For Unicode
	Unicode Complexity
	Unicode Implementation
	Programming Languages
	Using Unicode in Linux
	Using Unicode
	Unicode Functions
	Slide 18
	Unicode on the Web
	Unicode in DNS
	Conclusions
	Sources

