

A Turn-based Strategy Game Testbed for Artificial
Intelligence

by

Joseph H. Souto

Presented to the Graduate and Research Committee of Lehigh University in
Candidacy for the Degree of Master of Science

in

Computer Engineering

Lehigh University

April 2007

ii

This thesis is accepted and approved in partial fulfillment of the requirements for the

Master of Science.

Date

Thesis Advisor

Co-Advisor

Chairperson of Department

iii

Table of Contents

List of Tables……………………………………………………………………………iv

List of Figures……………………………………………………………………………v

Abstract…………………………………………………………………………………..1

Introduction………………………………………………………………………………3

TIELT……………………………………………………………………………………4

 What is TIELT?...4

 TIELT’s Components…………………………………………………………...6

 Sample TIELT Domain………………………………………………………....12

Call to Power 2………………………………………………………………………….23

 What is Call to Power 2?..23

 How to Play Call to Power 2……………………………………………………23

 Call to Power 2 API…………………………………………………………….30

 Code Reference…………………………………………………………………35

The TIELT – Call to Power 2 Model…………………………………………………...37

 What is the TIELT – Call to Power 2 Model?...37

 Environment Model…………………………………………………………….37

 Simulator Interface……………………………………………………………..52

 Communication Protocol……………………………………………………….67

Sample Session…………………………………………………………………………70

Conclusions……………………………………………………………………………..81

 Summary………………………………………………………………………..81

 Future Work…………………………………………………………………….81

Bibliography……………………………………………………………………………82

Vita……………………………………………………………………………………..83

iv

List of Tables

Table 1: Call to Power 2 Action Models………………………………………………44
Table 2: Call to Power 2 Observation Models………………………………………...52
Table 3: Call to Power 2 Outgoing Messages…………………………………………59
Table 4: Call to Power 2 Incoming Messages…………………………………………67

v

List of Figures

Figure 1: Worst-case number of integrations…………………………………………..6
Figure 2: Best-case number of integrations…………………………………………….6
Figure 3: TIELT System Architecture………………………………………………….7
Figure 4: TIELT Decision System Architecture………………………………………..9
Figure 5: Actions in TIELT…………………………………………………………….11
Figure 6: Sensing Game State in TIELT……………………………………………….12
Figure 7: TIELT Environment Properties……………………………………………....13
Figure 8: TIELT State Variables……………………………………………………….14
Figure 9: TIELT Classes………………………………………………………………..15
Figure 10: TIELT Class Member Definition …………………………………………..15
Figure 11: TIELT Action Model……………………………………………………….16
Figure 12: TIELT Helper Function……………………………………………………..17
Figure 13: TIELT Communication Properties………………………………………….18
Figure 14: TIELT Outgoing Simulator Message……………………………………….19
Figure 15: TIELT Incoming Simulator Message……………………………………….21
Figure 16: TIELT Observation Model………………………………………………….22
Figure 17: Call to Power 2 Interface……………………………………………………24
Figure 18: Call to Power 2 Build Manager……………………………………………..25
Figure 19: Call to Power 2 City Improvements………………………………………...26
Figure 20: Call to Power 2 City Manager………………………………………………27
Figure 21: Call to Power 2 – Contact with Rival Civilizations………………………...28
Figure 22: Call to Power 2 Combat…………………………………………………….29
Figure 23: TIELT – CTP2 Communication Protocol…………………………………..69
Figure 24: Start of Enhanced Session…………………………………………………..70
Figure 25: First Turn with Enhanced Session………………………………………….71
Figure 26: Building a City……………………………………………………………...72
Figure 27: Producing Military Units……………………………………………………73
Figure 28: New Units Completed………………………………………………………74
Figure 29: Exploring the Map…………………………………………………………..75
Figure 30: Building City Improvements………………………………………………..76
Figure 31: Defending a City……………………………………………………………77
Figure 32: Attacking an Enemy City…………………………………………………...78
Figure 33: Attack Success………………………………………………………………79
Figure 34: Attacking Enemy Unit………………………………………………………80

1

Abstract

The DARPA Transfer Learning Project is a program that intends to develop,

implement, demonstrate and evaluate theories, architectures, algorithms, methods, and

techniques that enable computers to apply knowledge learned for a particular, original set

of tasks to achieve superior performance on new, previously unseen tasks. [Transfer

Learning, 2007] Specifically, the goal is to develop and evaluate the performance of

transfer learning agents in simulated environments.

 The Testbed for Integrating and Evaluating Learning Techniques (TIELT) is a

software tool developed by the Naval Research Lab that is used to integrate AI systems

with gaming simulators, and evaluate how well those systems learn on selected tasks.

[Aha, 2007]

Call to Power 2 is a turn-based strategy game based on Civilization. In Call to

Power 2, the player develops a civilization and progresses through technological ages

from ancient to near-future times. During the game, the player interacts with other rival

civilizations and manages the resources and economy of their civilization. It is a good

game to use to test intelligent agents because there are many disparate factors that much

be gauged at any given time, and decisions must be made based upon these elements.

Some of the decisions a player or intelligent agent must make include: where to build

new cities, whether to explore or expand the civilization, how to dispose forces to attack

enemy units, and which technological advances to seek.

 As part of the Transfer Learning Project, intelligent agents will be tested in

conjunction with Call to Power 2. To this end, Call to Power 2 needed to be integrated

with TIELT to use and evaluate these agents. This integration required effort on two

2

fronts. First, the game world and important game objects had to be modeled in TIELT.

Second, an API needed to be developed that both enables simple control of the actions of

the computer player in Call to Power 2, as well as allowing an interface with TIELT so

that a TIELT agent can execute the functions available in the API. This thesis explains

the work entailed in this process and shows an example of the end results.

3

1. Introduction

Transfer learning is a theory proposed by Thorndike & Woodworth (1901) that

proposes that things humans approach new tasks by applying things learned in other

similar situations. [Thorndike & Woodworth, 1901] A simple transfer learning example

would be that when a human drives a bus for the first time, they will apply things that

they have learned about driving when they drove a car.

The DARPA Transfer Learning Project is based on the belief that artificial

intelligent agents can be constructed and improved by the same method. By training an

intelligent agent one context, in our case a computer game, the agent should then perform

better in other similar types of computer games.

One of Lehigh’s tasks in the Transfer Learning Project is to enable the testing of

intelligent agents in the turn-based strategy game Call to Power 2. Call to Power 2 was

chosen for two reasons. First, it is a game that involves many strategic factors that an

agent would have to make decisions on. Some of the many decisions a player or

intelligent agent must make include: where to build new cities, whether to explore or

expand the civilization, how to dispose forces to attack enemy units, and which

technological advances to seek. Second, the source code for Call to Power 2 was made

open-source by Activision in 2003, and is maintained by an open-source community

called Apolyton [Apolyton, 2007]. This allows us to make any modifications to the game

necessary to enable integration with the AI tools used by the Transfer Learning Project.

The results of this project will not only be of benefit to the DARPA Transfer

Learning Project. The development of the API will be of great benefit to other AI

researchers because it provides a simple interface that will allow them to construct and

4

test intelligent agents for use in Call to Power 2 without requiring in-depth knowledge of

the details of the Call to Power 2 system architecture.

There were a few difficulties involved with doing this project. First, even though

Call to Power 2 has been made open-source, for legal reasons Activision had to remove

all documentation from the code. This makes it rather challenging to come to an

understanding of the Call to Power 2 system architecture and the design decisions that the

developers made along the way. Consequently, it can be very arduous to add additional

features to the API as it requires understanding some of the internal functionality of the

game in order to interact with it. Additionally, TIELT is a continually evolving system to

meet the needs of the Transfer Learning Project. When new versions are released by the

Naval Research Lab, the work done to integrate a game with previous versions of TIELT

must be converted to the new versions.

This thesis is divided as follows. Section 2 introduces the AI research tool,

TIELT. Section 3 describes Call to Power 2 and our API. Section 4 explains the TIELT

model of Call to Power 2. Section 5 shows a sample session of Call to Power 2 played

with the completed TIELT integration. Lastly, Section 6 lists conclusions and further

work possible due to these efforts.

5

2. TIELT

2.1 What is TIELT?

Tielt is a software tool developed by the Naval Research Lab (NRL) to facilitate

AI researchers in the evaluation of intelligent decision systems in various game engines

(e.g., real-time strategy, discrete strategy, role playing, team sports, first-person shooter).

Emphasis has been placed upon games that are applicable to military simulations, which

is part of why Call to Power 2 was selected in conjunction with the Transfer Learning

Project. [Aha, 2007]

One might ask why is TIELT necessary at all? Given that Call to Power 2 is

open-source, why not simply modify the existing AI engine for the computer player

directly? The answer to these questions is time and integration complexity. Even though

a game may be open-source, it would still be a daunting task to come to a complete

enough understanding of the system architecture to be able to modify the AI code

directly. Additionally, modifying the AI directly would make it difficult to test the

performance of more than one algorithm for an intelligent agent. Since your newly

developed code would be very tightly bound to the architecture of the game, it would

require almost a complete rewrite of the code to test a different type of agent program.

As for complexity, given that the purpose of the transfer learning project is to test

a variety of intelligent agents across a variety of simulators, for each one of x agents you

would need to perform an integration for each one of the y simulators you want to test the

agent on. This requires a total of x*y integrations. TIELT, however has the advantage of

acting as an intermediary between the simulators and the agent programs. Once a

simulator is integrated with TIELT, it does not need to know how to communicate with

any of the agent programs because it TIELT hides the details of the communication from

6

the simulator. Likewise all the agents need to know is how to communicate with TIELT;

they do not need to know how the communication is performed with the simulation

engine. Therefore, with the aid of TIELT, the number of integrations required to test a

suite of intelligent agents is reduced from x*y to x + y. See the figures below.

Figure 1: Worst-case number of integrations. Taken from: [Aha, 2004]

Figure 2: Best-case number of integrations. Taken from: [Aha, 2004]

2.2 TIELT’s Components
 By acting as this intermediary between the simulation engine and the cognitive

system, the task of evaluating a transfer learning agent becomes broken down into a

series of much simpler components. The following diagram shows the resulting system

in Figure 3.

Integrations necessary without TIELT
m*n integrations Simulator1

Simulatorm

Cognitive System1

Cognitive Systemn
. .

Integrations necessary with TIELT
m+n integrations Simulator1

Simulatorm

Cognitive System1

Cognitive Systemn
TIELT. .

7

Figure 3: TIELT System Architecture. Taken from: [Aha, 2007]

 Before the experiments can begin, one must first build the game model for the

simulation engine in TIELT. This can be seen at the bottom of figure 3 above in which

the user of TIELT creates the game model, game interface model, decision system

interface model, etc. These components will be explained in greater detail in Section 2.3.

Once TIELT has been integrated, experiments can be performed. As seen in

Figure 3, on the leftmost end of the system, we have the game that we’re testing our

agent with. The game sends information about the changing state of the game world to

the TIELT module. Through TIELT’s user interface, the user of TIELT can observe this

information about changes to the state of the world. When these messages are received,

internal state information within TIELT is then updated according to rules set forth by the

8

TIELT user. These messages about these changes to the game state are also passed on to

the decision system that has been integrated with TIELT, as seen in Figure 3 on the right

side. The decision system uses these sensors combined with the current state information

within TIELT’s knowledge bases to evaluate what is happening within the game world.

Once it makes a decision on which action to perform, it sends message(s) with the

proposed action(s) back to TIELT. These actions can be used in one of two ways. The

TIELT user can observe these proposed actions, and either use the agent’s proposed

actions as advice system to play the game in a more informed manner. Or the agent can

control the actions of the player directly by sending these action messages through

TIELT to the simulation engine. The TIELT user can also observe the actions that the

decision system has performed in order to monitor the quality of the decisions the agent

program has made.

It can be seen therefore, that TIELT makes it very easy to test and compare the

performance of a large variety of intelligent agents in a given simulation engine. To test

the performance of agent program Y instead of agent program X, all that is required is to

have a TIELT integration with each agent program. Then, given a suite of tests in the

game environment, all which is required is to run these tests with each different agent

program hooked up at the other end of TIELT.

To get a more in-depth view of how games are played in conjunction with TIELT,

consider the following example situation for Call to Power 2. Suppose you have a

Settler, and want to settle a new city. Assume that you have queried the game engine

about whether a city can be build on the tile that unit is currently on (more specifics on

how this task is done will be provided later in Section 4). TIELT receives a response

9

message, CityBuildable, indicating that a city can be built on that tile. The Learning

Translator TIELT module sees that the game engine has indicated that a city can built on

that tile and decides to tell the game engine to have that Settler build a city. In order to

perform this action, it creates a message, BuildNewCity, which contains parameters

indicating that this Settler should build a city on its tile. After it has been created, the

Learning Translator module sends this BuildNewCity message to the Decision System.

Once the Decision System has received the BuildNewCity message, it sends it to the

Action Translator TIELT module to convert this desire to settle a new city into an output

message to be sent to the game engine. This whole process is summarized in Figure 4

below.

Figure 4: TIELT Decision System Architecture. Taken from: [Aha, 2007]

10

After the decision has been made, and the desired action has been selected, the

next step is for the Action Translator TIELT module to convert the action to a message

that will tell the simulator what to do. When the Action Translator receives the

BuildNewCity decision from the Decision Sytem, it determines that it is associated with a

particular operator for interfacing with the simulation engine. In this case, it associates

the BuildNewCity decision with an action model called BuildCity and populates the

parameters of the BuildCity operator with information from BuildNewCity and the current

state of the game as kept in TIELT. The BuildCity action model is shown to the TIELT

user, and is then using information from the Game Interface Model module, TIELT

associates the BuildCity action model with a message, BUILD_CITY, which when

populated with the appropriate parameters is sent out on a socket to the game in order to

perform the action of building a city. Finally the game receives the BUILD_CITY

message and has the Settler create a new city. This set of actions is shown in Figure 5

below.

11

Figure 5: Actions in TIELT. Taken from: [Aha, 2007]

 After the BUILD_CITY message has been received by the game engine, the

Settler will build a new city. Since the creation of a new city changes the game state,

once this action has been completed, the game engine will send a message,

CITY_SETTLED, back to TIELT indicating where the new city was built. The Game

Interface Model will see the CITY_SETTLED message and translate it to its

corresponding Observation Model, CitySettled. The parameters of this observation model

are then used, along with the rules in the Game Model, to determine the manner in which

TIELT’s model of the game state should be modified when CitySettled has been received.

After the current state has been updated by the Model Updater TIELT module, it informs

12

the Controller that a CitySettled event has been perceived, and passes this information on

to the user and the agent program. This process can be seen below in Figure 6.

Figure 6: Sensing Game State in TIELT. Taken from: [Aha, 2007]

2.3 Sample TIELT Domain
With all that in mind about the architecture of TIELT, now we can discuss how to

model the rules of a game within TIELT. We will do this by example. We will show

how a simple domain is set up by giving a brief overview of how to model a well known

game, Chess, in TIELT.

The first step with TIELT is to set up the Environment Model. Here we define a

few rules about what type of game we wish to model and how it works.

13

Figure 7: TIELT Environment Properties

Chess is a game played on a 2D board in which two opposing players take turns making

their moves. At any given time, the entire game world is completely visible to either of

the players (accessible). The next state of the game is determined entirely by the actions

of one of the players (deterministic). All the rules of the game are known (complete).

And only one of the two players can win the game (Zero Sum, Non-Team-Oriented).

 After defining the rules of the game, the next step is to define the state variables.

These are variables which represent data about the current state of the game world.

When TIELT perceives a change in the state of the game world, the state variables will

be modified in order to reflect this change in the game world. Examples of state

variables one would want to use in Chess include a data structure to represent the board,

the number of pieces on the board, and a representation of each different type of piece

used in the game. These, among other sample state variables are shown in Figure 8

below.

14

Figure 8: TIELT State Variables

Corollary to specifying the state variables is defining various classes to be used in

TIELT. Classes in TIELT are much like C++ classes in that they have members, that can

be either primitive data types or objects, and functions which operate upon those member

variables. An example of a class used for Chess is the Piece class. The Piece class

contains such information as which type of piece something is, what player it belongs to,

and where it resides on the board among other information. The member variables of the

Piece class are shown in Figure 9.

15

Figure 9: TIELT Classes

The Piece class also has one member function, called getLetter(), which is used to

return a single letter representing the type of piece a Piece object represents. This

member function is used by other functions to get a quick reference to the types of pieces

being dealt with. Part of the definition of the getLetter() function is shown in Figure 10.

Figure 10: TIELT Class Member Definition

16

After these aspects of the state are defined, the next step is to specify the Action

Models. As shown earlier, an Action Model is a TIELT representation of an action or set

of actions possible in the game world. One such action model needed for Chess is

something to represent moving a piece on the game board. This action model can be

defined simply as movePiece(), which takes arguments defining what piece is to be

moved, and what location on the board it is to be moved to. Figure 11 shows how the

movePiece() message is declared in TIELT.

Figure 11: TIELT Action Model

17

As seen, the Action Model is defined by its name, the parameters it is called with,

what state of the game it can be used in, whether there are any specific preconditions

restricting the use of that action (“Conditions”), whether the action will change TIELT’s

game state (“State Changes”), and if this action will move the game into a new phase.

It will also be helpful to define some helper functions to perform logical

operations. These functions will be useful for things like determining if a move can be

made, and what location on the board a moved piece will be at as a result of a move. An

example of a helper function is shown below in Figure 12.

Figure 12: TIELT Helper Function

Here we see an example helper function for determining if a rook’s move is valid.

Given as input a piece object referring to a rook, and a location object referring to the

rook’s intended destination, isLegalRookMove() will return true if the move is valid for

18

the rook and false if the move is invalid. Functions like these are used in various places

to assist in deciding what to do, as we shall see shortly.

After defining all the necessary Action Models, we will now take a step away

from the Environment Model for the moment, and begin setting up the Simulator

Interface Model. The first thing to do is define how TIELT will communicate with the

game engine. The simplest way to do this is via a TCP/IP connection on a socket. A

format specifying precisely how messages and their associated parameters will be sent

will also be defined here.

Figure 13: TIELT Communication Properties

19

As seen above, messages to the game engine have been defined to begin with the

name of the message, followed by the set of comma-delimited parameter values in

parenthesis. Messages can be defined in many ways, but this format is simple, and

intuitively looks similar to function calls in a programming language.

The next step is to define the messages that will be sent to the game engine in

order to cause things to happen within the game. To continue with our example, we will

define a message to move a piece on the board, which we will call move(). This message

will be triggered whenever TIELT invokes the movePiece() action model, and thus it will

have access to movePiece’s parameters, p and lTo. The definition of move is shown in

Figure 14.

20

Figure 14: TIELT Outgoing Simulator Message

Here we see that move will send a string to the game engine to represent what

piece it wants to move to which location. In order to set up this string, it uses some of the

helper functions mentioned earlier in order to convert the TIELT objects for p and lTo

into a string type. Then it checks which player made this move in order to update the

game state to reflect the player whose turn will be next after this move is made.

After all these outgoing messages have been defined, we must define messages

coming in from the game engine to TIELT. These messages are sent from the simulator

whenever there is a change in the game world. In the Chess example, one such incoming

21

message would be a message representing the end of the opposing player’s turn, which

we will call go(). Upon receipt of the go() message, the game state will be updated to

reflect that it is now our turn. The definition of the go() message is shown below in

Figure 15.

Figure 15: TIELT Incoming Simulator Message

After all of the incoming messages have been defined, the final step is to

complete the environment model by setting up the Observation Models. Observation

Models represent our ability to sense changes in the game world. One such observation

22

we will want to sense is associated with the go() message from Figure 15. As seen in the

model change code for go(), it triggers the OpponentMoves observation model. When

this happens, we will want to update the game state in order to reflect the fact that it is

now our turn. This can be seen in Figure 16 below, in that when OpponentMoves is

triggered it begins the phase “MyTurn”.

Figure 16: TIELT Observation Model

Once all the sensors are defined by the Observation Models, we have completed

our TIELT interface with the desired game engine.

23

3. Call To Power 2

3.1 What is Call to Power 2?

Call to Power 2 is a turn-based strategy game based on Civilization. In Call to

Power 2, the player develops a civilization and progresses through technological ages

from ancient to near-future times. During the game, the player interacts with other rival

civilizations and manages the resources and economy of their civilization. Victory is

attained by either military conquest of all rival civilizations, or by reaching world peace

through diplomatic means. It is a good game to use to test intelligent agents because

there are many disparate factors that much be gauged at any given time, and decisions

must be made based upon these elements. Where to build new cities, whether to explore

or expand the civilization, how to dispose forces to attack enemy units, and which

technological advances to seek are but a few of the many decisions to be made by a

player or an intelligent agent

3.2 How to Play Call to Power 2
 A game of Call to Power 2 begins with the player in control of two Settler units.

Settlers are non-military units that build new cities. At the start of the game, the player

chooses where to build to their initial cities. Things to consider when choosing where to

place a new city are the type of terrain it is on, the amount of food and commerce that tile

can provide, and whether there are any tradable goods in the vicinity of that tile. See

Figure 17 below for a view of this situation at the start of the game.

24

Figure 17: Call to Power 2 Interface

Here we see the portion of the map we start the game in. As seen, the board is divided

into square tiles, and is viewed from overhead. Tiles that have not yet been explored are

displayed in black. There is one Settler built a city on a plains tile. Within the bounds of

that city (dashed white line) is a tradable good, tobacco. The other Settler we started the

game with is on a forest tile near another tradable good, beavers. In the bottom left is a

minimap displaying the explored portion of the map in relation to the rest of the

unexplored tiles. In the bottom right is a control panel allowing access to the information

about various aspects of your civilization.

 Once a city has been built, units can be produced within that city. Military units

are one example of a type of unit that can be built in the city. In the figure above, we can

25

see that a Warrior is being built in Rome, and will be completed in 9 turns. The

production of units in a city is controlled via the Build Manager window for each city.

An example of the Build Manager window can be seen below in Figure 18. .

Figure 18: Call to Power 2 Build Manager

The Build Manger shows all the units that can be built at that point (more become

available as the civilization advances to new technological ages), and has a build queue

which allows multiple units to be built sequentially after the previous unit in the queue

has completed.

 Units are not the only type of thing that can be built in a city. Another type of

thing that can be produced is a city improvement. City improvements do not appear on

the map, but are stored internally in the state of each particular city. City improvements

provide various types of benefits when built, including increased commerce or

production, and additional defense against attacking enemy units. An example of a city

improvement can be seen below in Figure 19 where we see that building a Granary would

26

provide a bonus to the production of food within this city. Another type of thing that

cities can produce is a Wonder. Wonders are accomplishments that take a long time to

build and provide a bonus to your entire empire upon their completion. Examples of

Wonders include the Great Wall of China, which removes all barbarians from your

empire, and Galileo’s Telescope, which increases the rate at which new science is

learned.

Figure 19: Call to Power 2 City Improvements

Many other things can be managed within each particular city. See Figure 20

below for a sample of some of the other many aspects of a city. The details of what each

specific thing in Figure 20 represents are beyond the scope of what was done for this

project, but they are shown to provide an idea of the amount of micromanagement

available in the game. It should be noted that the game manages the growth of a city

automatically unless the player tweaks the parameters for its management. Additionally,

a “Mayor” can be assigned to the city, as seen in Figure 20, which automatically

27

optimizes the resources of a city towards a particular goal (e.g.: Production, Science,

etc.).

Figure 20: Call to Power 2 City Manager

 As the game progresses, the player eventually comes into contact with rival

civilizations. Figure 21 shows a screenshot from later in the game after a few military

units have been produced and more of the map has been explored. As seen, two cities

belonging to a rival civilization have been discovered, Swansea and Cardiff, indicated by

the orange number next to them.

28

Figure 21: Call to Power 2 – Contact with Rival Civilizations

Call to Power 2 offers three methods of obtaining victory: diplomacy, scientific

advancement, and military conquest. Diplomacy involves offering resources or scientific

advances to the other civilization in exchange for eventually attempting to forge treaties

and eventually a military alliance with that civilization. Victory through science entails

attaining each scientific advancement in the tech tree, and then building the Solaris

Project wonder. Diplomacy and scientific advancement are rather complex to deal with

from an agent’s perspective, and is thus beyond the scope of this project, so it will not be

discussed further. Military conquest involves destroying all existing enemy units and

cities with your military units. In the bottom right corner of the figure above you can see

29

the actions available with the highlighted Warrior unit. Military units have the ability to

attack enemy units or enemy cities.

When an attack command is issued, combat with the defending enemy units is

initiated. An example of a combat window is shown in Figure 22 below. There we see

the highlighted Warrior from the previous picture attacking the city adjacent to it, which

is defended by an enemy Hoplite unit. Combat is conducted by each unit striking the

other simultaneously and doing an amount of damage within a variable range according

to which type of unit it is. Additionally, there are bonuses given to the defender when

they are garrisoning a city. Combat continues until either the attacking player decides to

retreat, or when one of the player’s units is wiped out.

Figure 22: Call to Power 2 Combat

30

3.3 Call to Power 2 API
 The previous section showed a few of the many complexities involved in playing

a game of Call to Power 2. Since the entire game extremely complex, we decided that an

agent should only be able to invoke a subset of all the possible actions available in the

game. It was decided to focus on the development of cities, units, and city

improvements, and attaining victory through military conquest.

 To that end, the source code for Call to Power 2 had to be modified to allow an

outside program to control the actions of the computer player. The source code for Call

to Power 2 was made open-source by Activision, and is maintained by an online

community called Apolyton. [Apolyton, 2007] Ushhan's Gudevia used this source code

to develop a basic API to control the computer player for his Master’s thesis in 2006

[cite: Ushan’s thesis]. That API allowed for the use of a few basic control commands,

however it was not enough to allow for automatic control by a TIELT-enabled agent

program. It was not able to provide any information as to whether a given command was

successful or not, and what the results of the action were. For example, you could tell a

Warrior to attack an enemy unit, but you could not determine if the combat was won or

lost. Also, that API had only a very limited ability to communicate with TIELT. Other

miscellaneous modifications were required as well, such as disabling modal dialogue

windows that pop up to display information during the game, so that an agent could play

through an entire session of the game without requiring human intervention. Therefore,

this project required adding to the API to allow a TIELT-enabled agent to play a

complete subset of the game with the functions available through the API, as well as

enabling a complete integration with TIELT so that an agent could both query the status

31

of aspects of the game and sense any spontaneous changes to the state of the game (e.g.:

having one of your units killed on an opponent’s turn), and making a few miscellaneous

optimizations to assist in the integration process.

The functions currently available in the API are as follows:

• MoveArmyTo: Instruct an army to move to a specified location

• Settle: Instruct a Settler to build a city on its current location

• CityBuild: Instructs one of your cities to build a specified type of unit

• CityImprove: Instructs a city to start building a city improvement of the specified

type.

• AttackEnemyPosWithArmy: Instructs an army to attack an enemy-occupied

location.

• AttackCityPosWithArmy: Instructs an army to attack a location where there is an

enemy-controlled city.

• ArmyToDefend: Instruct an army to fortify the city at its current location.

• StopDefending: Instructs an army to stop fortifying its current location

• FindEnemyUnit: Searches for enemy units visible from one of your own units.

• FindEnemyCity: Searches for enemy cities visible from one of your own units.

• FindUnexplored: Searches for the closest unexplored territory an army can reach.

• ArmyCanReach: Determines whether or not there is a known path from an army

to a location.

• QueryCityBuildable: Queries if a unit can build a city at its current location.

• QueryMoveable: Queries if a unit can move to a given location on the map.

• QueryUnitBuildable: Queries if a unit can be produced by a given city you control

32

• QueryImprovementBuildable: Queries if an improvement can be built in a given

city you control.

• QueryGarrison: Queries if a unit can garrison its current location.

• QueryUngarrison: Queries if a unit can stop garrisoning its current location

• QueryUnitAttackable: Queries if a unit can attack an enemy unit on a given

location

• QueryCityAttackable: Queries if a unit can attack an enemy city on a given

location

The sensor messages added to inform TIELT of game state changes are as follows:

• An attack on an enemy city has succeeded

• An attack on an enemy unit has succeeded

• One of your units has been destroyed

• One of your cities has been destroyed

• A new city has been built

• A new unit has finished building

• Updates on the position of your units at the start of every turn

• Call To Power 2 has been started

• A game has started

• Your turn has started

• The game has ended

• Game has been lost

• Game has been won

• Call to Power 2 has been closed

33

Another thing worth mentioning is the abstraction provided by the API. Call to

Power 2 uses a complex system of interrelated classes and objects to control different

aspects of the game. It can become difficult to come to an understanding of this

architecture in order to modify the game, both because of the complexity of the system

architecture and because all the comments were removed from the source code by

Activision. To simplify this problem, the API defines a few different classes in order to

collect aspects of these internal objects into a single set of easy to understand objects.

The API provides four different classes, defined as follows:

API_Player

Description: This is a class that represents a one of the players in the game

Members:

• int m_iIndex: this is a signed 32-bit integer which represents a single player, it

refers to an index into a global array of players kept by the game

• Player *player: this is a pointer into Call to Power 2’s internal Player class

Methods:

• Constructors:

o API_Player(const int p_iIndex)

o API_Player(const API_Player & p_pOther)

• Destructor:

o ~API_Player(): destructor

• Accessors:

o int GetIndex()

API_Location

Description: This is a class that represents a tile on the map

Members:

• sint16 m_iXCoord: x-coordinate of this location

34

• sint16 m_iYCoord: y-coordinate of this location

• MapPoint point: this is a reference to Call to Power 2’s internal class for

locations

Methods:

• Constructors:

o API_Location(const MapPoint p_pPoint)

o API_Location(const sint16 p_iXCoord, const sint16 p_iYCoord)

o API_Location(const API_Location & p_lOther)

• Destructor:

o ~API_Location()

• Accessors:

o sint16 GetXCoord(): access the x-coordinate member

o sint16 GetYCoord(): access the y-coordinate member

API_City

Description: This is a class that represents a city on one of the tiles in the game

Members:

• API_Player m_pPlayer: reference to the player that owns this city

• sint32 m_iCityId: integer identification for this city, this represents an index into

an array of the player’s cities

Methods:

• Constructors:

o API_City(const API_Player p_pPlayer, const sint32 p_iCityId);

• Destructor:

o ~API_City();

• Accessors:

o API_Location GetLocation(): access the location of the city

o sint32 GetIndex(): access the index of the player who owns this city

35

API_Army

Description: This is a class that represents an army unit (military or non-military) on one

of the tiles in the game

Members:

• API_Player m_pPlayer: reference to the player that owns this city

• sint32 m_iArmyId: integer identification for this army, this represents an index

into an array of the player’s armies

Methods:

• Constructors:

o API_Army(const API_Player p_pPlayer, const sint32 p_iArmyId)

• Destructor:

o ~API_Army();

• Accessors:

o API_Location GetLocation(): access the location of the army

o sint32 GetIndex(): access the index of the player who owns this army

It is worth noting that because of the abstraction of the game that this API provides,

this project is not solely of use to researchers who wish to use TIELT. Since the API

provides a simple C++ interface to control the actions of the computer player, any AI

researcher could write an intelligent agent in C++ to interface with Call to Power 2

directly. It can even be of use to members of the Apolyton community who wish to make

further modifications to the game’s functionality since it simplifies ways of dealing with

the details of the data structures used for controlling the game.

3.4 Code Reference
The Call to Power 2 API is a constantly evolving project. The most current version

of the API can always be found freely available at the InSyTe lab’s website for the Call

36

to Power 2 – TIELT Integration project:

http://www.cse.lehigh.edu/InSyTe/CTP2TieltIntegration/CTP2Integration.html

37

4. The TIELT – Call To Power 2 Model

4.1 What is the TIELT – Call to Power 2 model?

 In Section 2 we discussed the purpose of TIELT and explained the steps

necessary to set up a domain for to model the rules of a game in TIELT. This section will

explain specifically how Call to Power 2 was modeled in TIELT and some of the design

decisions made for this purpose. Note that similar to the API, the Call to Power 2 model

in TIELT also occasionally changes to fit the needs of the project. The TIELT specs can

also be found online at the InSyTe lab website:

http://www.cse.lehigh.edu/InSyTe/CTP2TieltIntegration/CTP2Integration.html

4.2 Environment Model
 As mentioned in Section 2, the TIELT Environment Model is where an abstract

model of the game world is made. This includes the rules of the game, state variables,

TIELT-specific classes, actions possible in the game world, and observations about

changes to the game state. We will begin by discussing the TIELT-specific classes made

since they will be referenced in the other parts of the game model.

 Similar to how the API abstracts the internals of Call to Power 2 in four different

classes, TIELT uses classes to abstract information about objects and state information in

Call to Power 2. The first classes are those which correspond to the classes used by the

API: API_Player, API_Location, API_Army, and API_City. Note that even though these

classes share the same name as the classes in the API, they are not identical. The TIELT

classes have member variables, but no associated methods. This is because these classes

are used in order to wrap information passed through messages to the game into objects

that are easier to conceive. These classes are defined as follows:

38

API_Player

Description: This is a class that represents a one of the players in the game

Members:

• int m_iIndex: an integer which represents a single player

API_Location

Description: This is a class that represents a tile on the map

Members:

• int m_iXCoord: x-coordinate of this location

• int m_iYCoord: y-coordinate of this location

API_City

Description: This is a class that represents a city on one of the tiles in the game

Members:

• API_Player m_pPlayer: reference to the player that owns this city

• sint32 m_iCityId: integer identification for this city, this represents an index into

an array of the player’s cities

• int x_pos: the x-coordinate of this city

• int y_pos: the y-coordinate of this city

API_Army

Description: This is a class that represents an army unit (military or non-military) on one

of the tiles in the game

Members:

• API_Player m_pPlayer: reference to the player that owns this city

• sint32 m_iArmyId: integer identification for this army, this represents an index

into an array of the player’s armies

39

In addition to these classes above, three more classes were added in order to represent

sets of these objects. These classes are named API_Location_List, API_Army_List, and

API_City_List, respectively. These classes were designed to function similarly to an

ArrayList in Java, in that the lists could grow and shrink dynamically as needed as

objects are added or removed from them. These objects are useful for representing

collections of objects. For example, an API_Army_List is used for representing every

unit a player controls in a single, easy to reference object. These classes are defined as

follows:

API_Location_List

Description: This is a class that represents a collection of API_Location objects

Members:

• API_Location[] location_array: an array of API_Location objects

• int last_filled_index: the last index in the array where an object has been placed

Methods:

• void Insert(API_Location element): insert an API_Location object to the end of

location_array

• void Delete(int x_coord, int y_coord): delete the element in location_array

whose x coordinate equals x_coord and whose y coordinate equals y_coord

• int GetNumElements(): access last_filled_index

• int FindElement(int x_coord, int y_coord): return the index of the API_Location

object in location_array whose x coordinate equals x_coord and whose y

coordinate equals y_coord

• void GrowArray(): increase the size of the array

• void ShrinkArray(): decrease the size of the array

API_City_List

Description: This is a class that represents a collection of API_City objects

40

Members:

• API_Location[] city_array: an array of API_Location objects

• int last_filled_index: the last index in the array where an object has been placed

Methods:

• void Insert(API_City element): insert an API_City object to the end of

location_array

• void Delete(int cityid): delete the element in city_array whose ID equals cityid

• int GetNumElements(): access last_filled_index

• int FindElement(int x_pos, int y_pos): return the index of the API_City object in

city_array whose x coordinate equals x_pos and whose y coordinate equals y_pos

• int FindElement(int cityid): return the index of the API_City object in city_array

whose ID equals cityid

• void GrowArray(): increase the size of the array

• void ShrinkArray(): decrease the size of the array

API_Army_List

Description: This is a class that represents a collection of API_Army objects

Members:

• API_Location[] army_array: an array of API_Army objects

• int last_filled_index: the last index in the array where an object has been placed

Methods:

• void Insert(API_Army element): insert an API_Army object to the end of

army_array

• void Delete(int armyid): delete the element in army_array whose ID equals

armyid

• int GetNumElements(): access last_filled_index

• int FindElement(int armyid): return the index of the API_Army object in

army_array whose ID equals armyid

• void GrowArray(): increase the size of the array

• void ShrinkArray(): decrease the size of the array

41

With those classes defined, we can now look at the list of TIELT state variables used

to model the current state of the world in Call to Power 2. As a design decision, we are

not keeping an object to represent the number or locations of enemy army units. This is

because enemy unit positions can change every turn, and due to the fog of war in Call to

Power 2, it is extremely difficult to keep accurate information in such an object.

Similarly, we do not keep track of the number of enemy units since the player cannot tell

when an enemy unit that cannot be seen has died. The state variables used are as follows:

• API_Location_List enemy_city_locations: the list of locations for every enemy

city encountered

• API_Army_List my_army_locations: the list of all armies you control

• API_City_List my_city_locations: the list of all cities you control

• int curr_turn: keeps track of how many turns have been taken

• int my_player_id: integer value of your player ID

• int game_state: integer representation of current game state: 0 = game lost, 1 = in

progress, 2 = game won.

• int num_enemy_cities: the number of enemy cities you have found

• int num_my_cities: the number of cities you control

• int num_my_armies: the number of armies you control

Now we will explain the Action Models used defined for Call to Power 2. Recall that

the Action Models represent the actions available for an agent to make in the

environment. Also, keep in mind that only the actions required to play a subset of the

42

game have been implemented due to the complexity of the entire game. It should also be

noted that due to the fact that some of the C++ API calls cannot give you an immediate

result as to whether they succeeded or failed (for example, the

AttackEnemyPosWithArmy function only returns whether it was possible to perform the

attack) it was decided to implement a query-driven system for the Action Models. That

is, if an agent wants to perform an action, it issues a query as to whether the action is

possible. If the action is possible, the agent is notified that the action is possible and a

command to perform that action is automatically issued by TIELT without requiring

input from the agent. If the action is not possible, the agent is simply notified that the

action is not possible. The only action that does not require a query is the action to end

the current turn. The list of available TIELT Action Models follows:

Load a game
Message Name:
Load
Description:
Loads a game
Parameters:
 @name //name of game to be loaded
Relevant Phases:
Playing
Precondition:

none
Triggers message:
GAME_LOAD

Save a game
Message Name:
Save
Description:
Saves a game
Parameters:
 @name //name of game to be loaded
Relevant Phases:
Playing
Precondition:

43

none
Triggers message:
GAME_SAVE

End your turn
Message Name:
EndTurn
Description:
Ends your current turn
Parameters:
 none
Relevant Phases:
Playing
Precondition:

none
Triggers message:
END_TURN

Query Attackable Enemy City
Message Name:
QueryAttackCity
Description:
Query if a unit can attack an enemy city
Parameters:

@API_Army p_aArmy //army unit to attack with
@API_Location p_lDestination //location of city to attack

Relevant Phases:
Playing
Precondition:
-enemy city exists at that location
-your army unit is adjacent to that city
Triggers message:
QU_ATTACK_CITY

Query Attackable Enemy Unit
Message Name:
QueryAttackUnit
Description:
Query if a unit can attack an enemy army
Parameters:
 @API_Army p_aArmy //army unit to attack with
 @API_Location p_lDestination //location of enemy unit to attack
Relevant Phases:
Playing
Precondition:

44

-your army unit is adjacent to that location
Triggers message:
QU_ATTACK_UNIT

Query Map
Message Name:
QueryUnexploredMap
Description:
Query for an unexplored map square around a unit. Note that this will only provide one
unexplored map square, and it is not guaranteed to find the nearest one.
Parameters:

@API_Army p_aArmy //army unit to do the exploration
Relevant Phases:
Playing
Precondition:
-the army unit to search with exists somewhere on the map
Triggers message:
QU_UNEXPLORED_MAP

Query Enemy Units
QueryEnemyUnit
Description:
Query for enemy army units in visible range of a unit
Parameters:

@API_Army p_aArmy //army unit to do the exploration
@int p_iVisionRange //Vision range of the unit (either 1 or two)

Relevant Phases:
Playing
Precondition:
-the army unit to search with exists somewhere on the map
Triggers message:
QU_ENEMY_UNIT

Query Enemy Cities
QueryEnemyCity
Description:
Query for enemy cities in visible range of a unit
Parameters:

@API_Army p_aArmy //army unit to do the exploration
@int p_iVisionRange //Vision range of the unit (either 1 or 2)

Relevant Phases:
Playing
Precondition:
-the army unit to search with exists somewhere on the map
Triggers message:

45

QU_ENEMY_CITY

Query Buildable Tile
QueryCityBuildable
Description:
Query if a unit can build a city at its current location
Parameters:
 @API_Army p_aArmy //army unit to build the city
Relevant Phases:
Playing
Preconditions:
 -a unit with that army ID exists somewhere on the map
Triggers message:
QU_CITY_BUILDABLE

Query Moveable Tile
QueryMoveable
Description:
Query if a given unit can move to a given tile (ex: Settlers can’t move onto ocean, ships
can’t move onto land)
Parameters:
 @API_Army p_aArmy //army unit to move
 @API_Location p_lLocation //location to move that unit to
Relevant Phases:
Playing
Preconditions:
 -that unit exists somewhere on the map
Triggers message:
QU_MOVEABLE

Query Buildable Unit
QueryUnitBuildable
Description:
Query if a unit can be built in a city (ie: you are far enough in the tech tree to build it)
Parameters:
 @integer unit_type //integer representation of unit you want to build
 @API_City p_cCity //city you want to build that unit in
Relevant Phases:
Playing
Preconditions:
 -the city to build the unit exists somewhere on the map
Triggers message:
QU_UNIT_BUILDABLE

Query Buildable City Improvement
QueryImprovementBuildable

46

Description:
Query if a city improvement can be built in a specified city (ie: you are far enough in the
tech tree to build it)
Parameters:
 @integer improvement //integer representation of improvement you want to build
 @API_City p_cCity //city you want to build that improvement in
Relevant Phases:
Playing
Preconditions:
 -the city to build the improvement exists somewhere on the map
Triggers message:
QU_IMPROVEMENT_BUILDABLE

Query if a unit can defend a City
Message Name:
QueryGarrison
Description:
Queries if a unit can garrison its current location
Parameters:

@API_Army p_aArmy //army unit to defend with
Relevant Phases:
Playing
Precondition:
-a city exists at the destination
-unit is on the city it will garrison
Triggers message:
QU_GARRISON

Query if a unit can stop defending a city
Message Name:
QueryUngarrison
Description:
Quries if a unit can stop garrisoning its current location
Parameters:

@API_Army p_aArmy //unit to be ungarrisoned
Relevant Phases:
Playing
Precondition:
-an army unit is garrisoning a city
Triggers message:
QU_UNGARRISON

Table 1: Call to Power 2 Action Models

Next, we will define the Observation Models created for Call to Power 2.

Observation Models represent our ability to sense changes in the game world. When an

47

Observation Model is triggered, a change may be made to the TIELT state variables in

order to model the new state of the game world. It is worth mentioning that it was

decided to make state information updates “push-driven” for this project. This means

that the game state is only updated when information about a state change is sent from

Call to Power 2 to TIELT. In other words, TIELT never assumes its action changes the

current state. It tells the game engine what it wants to do and then waits for information

on what happened as a result of the desired action(s). Hence, for the Observation

Models, we will also list any corresponding state changes that they cause. The

Observation Models are as follows:

Enemy City Destroyed
Message Name:
EnemyCityDestroyed
Description:
One of your units destroyed an enemy city
Parameters:

@int armyID //ID of army that attacked the city
@int x_pos //x-position of city that was attacked
@int y_pos //y-position of city that was attacked

Conditions:
none
Triggered By:
UPD_ATTACK_CITY returning success

Enemy Unit Destroyed
Message Name:
EnemyUnitDestroyed
Description:
One of your units destroyed an enemy unit
Parameters:

@int armyID //ID of army that attacked the unit
@int x_pos //x-position of army that attacked the enemy unit
@int y_pos //y-position of army that attacked the enemy unit

Note: This does not return the x-y position of the unit that was killed
Conditions:
none
Triggered By:

48

UPD_ATTACK_UNIT returning successs

My Unit Destroyed
Message Name:
MyUnitDestroyed
Description:
One of your units was destroyed
Parameters:

@int armyID //ID of army that was destroyed
@int x_pos //x-position of the unit that was destroyed
@int y_pos //y-position of the unit that was destroyed

Conditions:
none
Triggered By:
DESTROYED_UNIT

My City Destroyed
Message Name:
MyCityDestroyed
Description:
One of your cities was destroyed
Parameters:

@int cityID //ID of city that was destroyed
@int x_pos //x-position of the unit that was destroyed
@int y_pos //y-position of the unit that was destroyed

Conditions:
none
Triggered By:
DESTROYED_CITY

New City Created
Message Name:
CitySettled
Description:
A new city has been settled
Parameters:

@int cityID //ID of the newly built city
@int x_pos //x position of city built
@int y_pos //y position of city built

Conditions:
none
Triggered By:
UPD_SETTLED_CITY_ID

New Unit Finished Building
Message Name:

49

NewUnitComplete
Description:
A new unit has finished building
Parameters:

@int armyID //ID of army unit being produced
@int x_pos //x-position of the city making the new unit
@int y_pos //y-position of the city making the new unit

Conditions:
none
Triggered By:
NEW_UNIT_COMPLETED

Unexplored Map Tile
Message Name:
UnexploredTile
Description:
Query response with x-y position of an unexplored tile by a unit. Note that this is not
guaranteed to be the closest unexplored tile with respect to the unit.
Parameters:

@bool success //set true if there is an unexplored tile around that unit
@int armyID //ID of army that is performing the search
@int x_pos //x-position of the tile returned
@int y_pos //y-position of the tile returned

Conditions:
none
Triggered By:
UPD_UNEXPLORED_MAP

Enemy Units Nearby
Message Name:
NearEnemyUnit
Description:
Query response with x-y positions of an enemy unit near a unit you control
Note: this is triggered once for each enemy unit near the unit you are querying with
respect to
Parameters:

@bool success //set true if there are any enemy units in visual range of
your unit

@int x_pos //x position of the enemy unit found
@int y_pos //y position of the enemy unit found

Conditions:
none
Triggered By:
UPD_ENEMY_UNIT

Enemy Cities Nearby

50

Message Name:
NearEnemyCity
Description:
Query response with x-y positions of an enemy city near a unit you control
Note: this is called once for each unit near the unit you are querying with respect to
Parameters:

@bool success //set true if there are any enemy units in visual range of
your unit

@int x_pos //x position of the enemy city found
@int y_pos //y position of the enemy city found

Conditions:
none
Triggered By:
UPD_ENEMY_CITY

Unit Position Update
Message Name:
UpdatePosition
Description:
Informs you of new position for unit with ID of armyID
Parameters:
 @int armyID //ID of army unit that has been moved
 @int old_x //old x position of the unit
 @int old_y //old y position of the unit

@int new_x //new x position of the unit
@int new_y //new y position of the unit

Conditions:
none
Triggered By:
UPD_ARMY_XY

City Can Be Attacked
Message Name:
CityAttackable
Description:
Query response whether a city can be attacked by a given unit
Parameters:

@bool success //set true if the city can be attacked
@int armyID //ID of the unit that will attack
@int x_pos //x-location of the city to be attacked
@int y_pos //y-location of the city to be attacked

Conditions:
none
Triggered By:
UPD_CITY_ATTACKABLE

51

Unit Can Be Attacked
Message Name:
UnitAttackable
Description:
Query response whether a unit can be attacked by a given unit
Parameters:

@bool success //set true if the unit can be attacked
@int armyID //ID of the unit that is attacking
@int x_pos //x-location of the unit to be attacked
@int y_pos //y-location of the unit to be attacked

Conditions:
none
Triggered By:
UPD_UNIT_ATTACKABLE

City Can Be Built
Message Name:
CityBuildable
Description:
Query response whether a city can be built on a given tile
Parameters:

@bool success //set true if there is an a city can be built on the x,y position
passed in from QU_CITY_BUILDABLE message

@int armyID //ID of the unit that will build the city
@int x_pos //x-location where city will be built
@int y_pos //y-location where city will be built

Conditions:
none
Triggered By:
UPD_CITY_BUILDABLE

Unit Can Be Moved
Message Name:
UnitMoveable
Description:
Query response whether a unit can move to a given tile
Parameters:

@bool success //set true if the unit in question can move to the tile passed
in from the QU_MOVEABLE message

@int armyID //ID of the unit that will move
@int x_pos //x-location where city will be built
@int y_pos //y-location where city will be built

Conditions:
none
Triggered By:
UPD_MOVEABLE

52

Unit Can Be Built
Message Name:
UnitBuildable
Description:
Query response whether a unit can be built
Parameters:

@bool success //set true if the unit type in question can be built
@int cityID //city the unit will be built in
@int unit_type //type of unit being built

Conditions:
none
State Changes:
none
Triggered By:
UPD_UNIT_BUILDABLE

City Improvement Can Be Built
Message Name:
ImprovementBuildable
Description:
Query response whether a city improvement can be built
Parameters:

@bool success //set true if the improvement type in question can be built
@int cityID //city the improvement will be built in
@int improvement_type //type of city improvement to build

Conditions:
none
Triggered By:
UPD_IMPROVEMENT_BUILDABLE

Unit Is Garrisoning
Message Name:
Garrisoning
Description:
Indicate whether a unit is garrisoning
Parameters:

@bool success //set true if the unit is garrisoning a city
@int armyID //ID of unit that is garrisoning
@int x_pos //x-position of the unit
@int y_pos //y-position of the unit

Conditions:
none
Triggered By:
UPD_GARRISON

53

Unit Has Stopped Garrisoning
Message Name:
StoppedGarrisoning
Description:
Indicate whether a unit has stopped garrisoning
Parameters:

@bool success //set true if the unit is garrisoning a city
@int armyID //ID of unit that is garrisoning
@int x_pos //x-position of the unit
@int y_pos //y-position of the unit

Conditions:
none
Triggered By:
UPD_UNGARRISON

A Turn Has Ended
Message Name:
TurnOver
Description:
Indicates that any turn has ended
Parameters:

none
Conditions:
none
Triggered By:
GAME_TICK

Your Turn Has Started
Message Name:
MyTurn
Description:
Indicates that your turn has begun
Parameters:

none
Conditions:
none
Triggered By:
GAME_MYTURN

Your Player ID
Message Name:
MyID
Description:
Indicates what your player ID is
Parameters:

@int playerID //your player ID

54

Conditions:
none
Triggered By:
GAME_MYID

Total Number of Players
Message Name:
NumPlayers
Description:
Indicates how many players are in the current game
Parameters:

@int num_players //total number of players
Conditions:
none
Triggered By:
GAME_NUM_PLAYERS
Note: this is supported in TIELT, but the message is not yet implemented in CTP2

Program Begins
Message Name:
Connected
Description:
Indicates start of CTP2 program
Parameters:

@int num_players //total number of players
Conditions:
none
Triggered By:
CTP2_START

Game Has Started
Message Name:
GameStarted
Description:
Indicates start of an individual game
Parameters:

none
Conditions:
none
Triggered By:
GAME_START

Lost Game
Message Name:
Lose
Description:

55

Indicates a game loss
Parameters:

none
Conditions:
none
Triggered By:
GAME_LOSE

Won Game
Message Name:
Win
Description:
Indicates a game win
Parameters:

none
Conditions:
none
Triggered By:
GAME_WIN

Saved Game
Message Name:
GameSaved
Description:
Indicates success or failure of attempt to save a game
Parameters:

@bool success //set to true if game saved successfully, otherwise false
Conditions:
none
Triggered By:
UPD_SAVE

Loaded Game
Message Name:
GameLoaded
Description:
Indicates success or failure of attempt to load a game
Parameters:

@bool success //set to true if game saved successfully, otherwise false
Conditions:
none
Triggered By:
UPD_LOAD

Game Finished
Message Name:

56

GameOver
Description:
Indicates end of an individual game
Parameters:

none
Conditions:
none
Triggered By:
GAME_DONE

Program Closed
Message Name:
Disconnected
Description:
Indicates end of CTP2 program
Parameters:

none
Conditions:
none
Triggered By:
CTP2_END

Table 2: Call to Power 2 Observation Models

4.3 Simulator Interface
 The Simulator Interface model defines the messages which TIELT uses in order

to communicate with the game engine. The Simulator Interface is broken down into

outgoing messages from TIELT to Call to Power 2, and incoming messages from Call to

Power 2 to TIELT. We will start with the outgoing messages. Note that these messages

will also make use of instantiated objects of the TIELT-specific classes that we defined in

the Environment Model. Also, there will be some messages defined here that are used

exclusively for handshaking with Call to Power 2 when initiating the TIELT-Call to

Power 2 connection before starting an experiment. The outgoing messages used for this

project are as follows:

Attack Enemy City
Message Name:
ACT_ATTACK_CITY

57

Description:
Instructs a unit to attack an enemy city
Message Arguments:

@API_Army p_aArmy //army unit to attack with
@API_Location p_lDestination //location of city to attack

Triggered By:
Incoming Message: UPD_CITY_ATTACKABLE
API Functions this will call:
AttackCityPosWithArmy(API_Army p_aArmy, const API_Location p_lDestination)
Replied to with:
UPD_ATTACK_CITY if attack was won
DESTROYED_UNIT if attack was lost

Attack Enemy Unit
ACT_ATTACK_UNIT
Description:
Instructs a unit to attack an enemy army
Message Arguments:
 @API_Army p_aArmy //army unit to attack with
 @API_Location p_lDestination //location of enemy unit to attack
Triggered By:
Incoming Message: UPD_UNIT_ATTACKABLE
API Functions this will call:
AttackEnemyPosWithArmy(API_Army p_aArmy, const API_Location p_lDestination)
Replied to with:
UPD_ATTACK_UNIT if attack was won
DESTROYED_UNIT if attack was lost

Build City
Message Name:
ACT_SETTLE
Description:
Instructs a Settler to move to a point on the map and build a city there
Message Arguments:

@API_Army p_aArmy //Settler to build the new city
Triggered By:
Incoming message: UPD_CITY_BUILDABLE
API Functions this will call:
Settle(API_Army p_aArmy)
Replied to with:
UPD_SETTLED_CITY_ID

Defend a City
Message Name:
ACT_GARRISON
Description:

58

Instructs a unit to garrison at its current location
Message Arguments:

@API_Army p_aArmy //army unit to defend with
Triggered By:
Incoming Message: UPD_GARRISON
API Functions this will call:
ArmyToDefend(API_Army p_aArmy);
Replied to with:
No need for a response since garrisoning is a deterministic action. UPD_GARRISON
will trigger the Garrisoning observation model.

Move a Unit
Message Name:
ACT_MOVE
Description:
Instruct a unit to move to a specified location
Message Arguments:

@API_Army p_aArmy //unit to be moved
@API_Location p_lDestination //location to move that unit to

Triggered By:
Incoming Message: UPD_MOVEABLE
API Functions this will call:
MoveArmyTo(API_Army p_aArmy, const API_Location p_lDestination)
Replied to with:
No immediate reply, but UPD_ARMY_XY will be sent at the start of the next turn to
indicate where the moved army is

Create a Unit
Message Name:
ACT_PRODUCE
Description:
Create a unit in a specified city
Message Arguments:

@API_City p_cCity //city to create the unit
@int p_iUnitType //integer representation of unit to create

Triggered By:
Incoming Message: UPD_UNIT_BUILDABLE
API Functions this will call:
CityBuild(API_City p_cCity, const API_UnitType p_iUnitType)
Replied to with:
No immediate reply because the unit is placed in the build queue and takes some number
of turns to complete. When the unit is finished NEW_UNIT_COMPLETED will be sent.

Improve a City
Message Name:
ACT_IMPROVE

59

Description:
Build a city improvement in a specified city
Message Arguments:

@API_City p_cCity //city to build the improvement
@int p_iImproveType //integer representation of improvement type to create

Triggered By:
Incoming Message: UPD_IMPROVEMENT_BUILDABLE
API Functions this will call:
CityImprove(API_City p_cCity, const API_CityImprovementType p_iImproveType)
Replied to with:
No reply because the improvement gets placed in the build queue. There is no
notification when the improvement is completed because city improvements are not
tracked in the game state.

Stop a Garrison
ACT_UNGARRISON
Description:
Stop a unit from garrisoning a city
Message Arguments:

@API_Army p_aArmy //unit to stop garrisoning
Triggered By:
Incoming Message: UPD_UNGARRISON
API Functions this will call:
StopDefending(API_Army p_aArmy)
Replied to with:
No need for a response since ungarrisoning is a deterministic action.
UPD_UNGARRISON will trigger the StoppedGarrisoning observation model.

Game Messages

Load a game
GAME_LOAD
Description:
Loads a game
Message Arguments:
 @name //name of game to be loaded
Triggered By:
Action Model: Load
API Functions this will call:
LoadGame
Replied to with:
UPD_LOAD

Save a game
GAME_SAVE
Description:

60

Saves the current game
Message Arguments:
 @name //name of game to be saved
Triggered By:
Action Model: Save
API Functions this will call:
SaveGame
Replied to with:
UPD_SAVE

End the Turn
END_TURN
Description:
Ends your current turn
Message Arguments:
 none
Triggered By:
Action Model: EndTurn
API Functions this will call:
None
Replied to with:
None

Acknowledge game start
HELLO
Description:
Acknowledges program starting
Message Arguments:
 none
Triggered By:
Incoming Message: CTP2_START
API Functions this will call:
None
Replied to with:
GAME_START

Query Messages
Query Attackable Enemy City
Message Name:
QU_ATTACK_CITY
Description:
Query whether your unit can attack an enemy city
Message Arguments:

@API_Army p_aArmy //army unit to do the exploration
@API_Location p_lDestination //location of city to attack

61

Triggered By:
Action Model: QueryAttackCity
API Functions this will call:
QueryCityAttackable(API_Army p_aArmy, API_Location p_lDestination);
Replied to with:
UPD_CITY_ATTACKABLE

Query Attackable Enemy Unit
Message Name:
QU_ATTACK_UNIT
Description:
Query whether your unit can attack an enemy unit
Message Arguments:

@API_Army p_aArmy //army unit to do the exploration
@API_Location p_lDestination //location of city to attack

Triggered By:
Action Model: QueryAttackUnit
API Functions this will call:
QueryUnitAttackable(API_Army p_aArmy, API_Location p_lDestination);
Replied to with:
UPD_UNIT_ATTACKABLE

Query Map
Message Name:
QU_UNEXPLORED_MAP
Description:
Query for an unexplored map square around a unit. Note that this will only provide one
unexplored map square, and it is not guaranteed to find the nearest one.
Message Arguments:

@API_Army p_aArmy //army unit to do the exploration
Triggered By:
Action Model: QueryUnexploredMap
API Functions this will call:
FindUnexplored(API_Army p_aArmy, API_Location & p_lUnexplored)
Replied to with:
UPD_UNEXPLORED_MAP

Query Enemy Units
QU_ENEMY_UNIT
Description:
Query for enemy army units in visible range of a unit
Message Arguments:

@API_Army p_aArmy //army unit to do the exploration
@int p_iVisionRange //Vision range of the unit (either 1 or two)

Triggered By:
Action Model: QueryEnemyUnit

62

API Functions this will call:
FindEnemyUnit(API_Army p_aArmy, const int p_iVisionRange, DynamicArray<Unit>
* p_pEnemyList)
Replied to with:
UPD_ENEMY_UNIT

Query Enemy Cities
QU_ENEMY_CITY
Description:
Query for enemy cities in visible range of a unit
Message Arguments:

@API_Army p_aArmy //army unit to do the exploration
@int p_iVisionRange //Vision range of the unit (either 1 or two)

Triggered By:
Action Model: QueryEnemyCity
API Functions this will call:
FindEnemyCity(API_Army p_aArmy, const int p_iVisionRange, DynamicArray<Unit>
* p_pCityList)
Replied to with:
UPD_ENEMY_CITY

Query Buildable Tile
QU_CITY_BUILDABLE
Description:
Query if a unit can build a city at its current location
Message Arguments:
 @API_Army p_aArmy //army unit to build the city
Triggered By:
Action Model: QueryCityBuildable
API Functions this will call:
CityBuild(API_City p_cCity, const API_UnitType p_iUnitType);
Replied to with:
UPD_CITY_BUILDABLE

Query Moveable Tile
QU_MOVEABLE
Description:
Query if a given unit can move to a given tile (ex: Settlers can’t move onto ocean, ships
can’t move onto land)
Message Arguments:
 @API_Army p_aArmy //army unit to move
 @API_Location p_lLocation //location to move that unit to
Triggered By:
Action Model: QueryMoveable
API Functions this will call:
QueryMoveable(API_Army p_aArmy, API_Location p_lLocation);

63

Replied to with:
UPD_MOVEABLE

Query Buildable Unit
QU_UNIT_BUILDABLE
Description:
Query if a given unit can be built in a city (ie: you are far enough in the tech tree to build
it)
Message Arguments:
 @integer unit_type //integer representation of unit you want to build
 @API_City p_cCity //city you want to build that unit in
Triggered By:
Action Model: QueryUnitBuildable
API Functions this will call:
QueryUnitBuildable(int unit_type, API_City p_cCity);
Replied to with:
UPD_UNIT_BUILDABLE

Query Buildable City Improvement
QU_IMPROVEMENT_BUILDABLE
Description:
Query if a city improvement can be built in a specified city (ie: you are far enough in the
tech tree to build it)
Message Arguments:
 @integer improvement //integer representation of the improvement you
want to build
 @API_City p_cCity //city you want to build the improvement in
Triggered By:
Action Model: QueryImprovementBuildable
API Functions this will call:
QueryImprovementBuildable(int improvement_type, API_City p_cCity);
Replied to with:
UPD_IMPROVEMENT BUILDABLE

Query Garrisoning Unit
QU_GARRISON
Description:
Query whether a given unit can garrison its current location
Message Arguments:
 @API_Army p_aArmy //army you are querying about
Triggered By:
Action Model: QueryGarrison
API Functions this will call:
QueryGarrison(API_Army p_aArmy);
Replied to with:
UPD_GARRISON

64

Query Stopping a Garrison
QU_UNGARRISON
Description:
Query whether a given unit can stop garrisoning its current location
Message Arguments:
 @API_Army p_aArmy //army you are querying about
Triggered By:
Action Model: QueryUngarrison
API Functions this will call:
QueryUngarrison(API_Army p_aArmy)
Replied to with:
UPD_UNGARRISON

Table 3: Call to Power 2 Outgoing Messages

 Peer to the outgoing messages are the incoming messages. These messages are

sent either in response to a query from TIELT or in response to a change in the game

state in Call to Power 2. Similar to the outgoing messages, there will be some incoming

messages listed that are used for handshaking when the program is started. The incoming

messages are as follows:

Update: Attack Enemy City
Message Name:
UPD_ATTACK_CITY
Description:
Update to indicate success or failure of a unit you control (with ID of armyID) attacking
city at location (x,y)
Message Arguments:

@bool success //set true if unit destroyed city, false if it died in the process
@int armyID //ID of army that attacked the city
@int x_pos //x-position of city that was attacked
@int y_pos //y-position of city that was attacked

Triggered By:
ACT_ATTACK_CITY
State update:
If (success)

Remove enemy city from enemy_city_locations array
num_enemy_cities--

 Call: EnemyCityDestroyed observation model

Update: Attack Enemy Army

65

Message Name:
UPD_ATTACK_UNIT
Description:
Update to indicate success or failure of a unit you control (with ID of armyID) attacking
an enemy unit at location (x,y)
Message Arguments:

@bool success //set true if your unit won, false if it died in the process
@int armyID //ID of army that attacked the city
@int x_pos //x-position of unit that you attacked with
@int y_pos //y-position of unit that you attacked with

Note: this does not report the x-y position of the unit that was destroyed
Triggered By:
ACT_ATTACK_UNIT
State update:
If (success)
 Call: EnemyUnitDestroyed observation model

Update: Settled City ID
Message Name:
UPD_SETTLED_CITY_ID
Description:
Update to indicate the ID of the city built by the settler and location passed in by the
ACT_SETTLE message
Message Arguments:

@int cityID //ID of the newly built city
@int x_pos //x position of city built
@int y_pos //y position of city built

Triggered By:
ACT_SETTLE
State update:
Add city to my_city_locations array
num_my_cities++
Call: CitySettled observation model

Update: New Unit Finished Building
Message Name:
NEW_UNIT_COMPLETED
Description:
Update to indicate information about a new unit that has finished building
Message Arguments:

@int armyID //ID of army unit being produced
@int x_pos //x-position of the new unit
@int y_pos //y-position of the new unit
@int type //the integer representation of the type of unit made

Triggered By:
-a new unit being created

66

State update:
Add this new unit to my_army_locations array
Call: NewUnitBuilding observation model

Update: Query Unexplored Map
Message Name:
UPD_UNEXPLORED_MAP
Description:
Update to indicate an unexplored tile near one of your units
Message Arguments:

@bool success //set true if there is an unexplored tile around that unit
@int armyID //ID of army that is performing the search
@int x_pos //x-position of the tile returned
@int y_pos //y-position of the tile returned

Triggered By:
QU_UNEXPLORED_MAP
State update:
Call: UnexploredTile observation model

Update: Query Enemy Unit
Message Name:
UPD_ENEMY_UNIT
Description:
Update to indicate the existence of enemy units in visual range of a specific army unit
you control
Message Arguments:

@bool success //set true if there are any enemy units in visual range of
your unit

@Array[] int positions //array of x and y positions (respectively) for units
found

Triggered By:
QU_ENEMY_UNIT
-also triggered at the start of every turn if there are enemy units nearby your units
State update:
if (success)

Call: NearEnemyUnit observation model

Update: Query Enemy City
Message Name:
UPD_ENEMY_CITY
Description:
Update to indicate the existence of enemy cities in visual range of a specific army unit
you control
Message Arguments:

@bool success //set true if there are any enemy cities in visual range of
your unit

67

@Array[] int positions //array of x and y positions (respectively) for cities
found

Triggered By:
QU_ENEMY_CITY
-also triggered at the start of every turn if there are enemy cities nearby
State update:
if (success)

Add these locations to enemy_city_locations array
num_enemy_cities = num_enemy_cities + length of array
Call: NearEnemyCity observation model

Update: Army X,Y position
Message Name:
UPD_ARMY_XY
Description:
Update to indicate an army’s x,y location
Message Arguments:
 @int armyID //ID of army unit that has been moved

@int x_pos //x position of the unit
@int y_pos //y position of the unit
@int type //the integer representation of the type of unit moved

Triggered By:
Start of your turn
State update:
Set army x and y position in my_army_locations array
Call: UpdatePosition observation model

Update: Buildable Tile
Message Name:
UPD_CITY_BUILDABLE
Description:
Update to indicate whether a city can be built on a certain tile
Message Arguments:

@bool success //set true if there is an a city can be built on the x,y position
passed in from QU_CITY_BUILDABLE message

@int armyID //ID of the unit that will build the city
@int x_pos //x-location where city will be built
@int y_pos //y-location where city will be built

Triggered By:
QU_CITY_BUILDABLE
State update:
Call: CityBuildable observation model
If (success)

Call: ACT_SETTLE outgoing message to build the city there

Update: Moveable Tile

68

Message Name:
UPD_MOVEABLE
Description:
Update to indicate whether a unit can be moved to a certain tile
Message Arguments:

@bool success //set true if the unit in question can move to the tile passed
in from the QU_MOVEABLE message

@int armyID //ID of the unit that will move
@int x_pos //x-location where the unit is
@int y_pos //y-location where the unit is
@int x_dest //x-location the unit will move to
@int y_dest //y-location the unit will move to

Triggered By:
QU_MOVEABLE
State update:
Call: UnitMoveable observation model
If (success)

Call: ACT_MOVE outgoing message to move the unit there

Update: Unit Buildable
Message Name:
UPD_UNIT_BUILDABLE
Description:
Update to indicate whether a unit can be built (ie: you are far enough in the tech tree to
build it)
Message Arguments:

@bool success //set true if the unit type in question can be built
@int cityID //city unit will be built in
@int unit_type //type of unit to build

Triggered By:
QU_UNIT_BUILDABLE
State update:
Call: UnitBuildable observation model
If (success)
 Call: ACT_PRODUCE outgoing message to make the unit

Update: City Improvement Buildable
Message Name:
UPD_IMPROVEMENT_BUILDABLE
Description:
Update to indicate whether a city improvement can be built (ie: you are far enough in the
tech tree to build it)
Message Arguments:

@bool success //set true if the improvement type in question can be built
@int cityID //ID of city to build the improvement
@int improvement_type //type of improvement to build

69

Triggered By:
QU_IMPROVEMENT_BUILDABLE
State update:
Call: ImprovementBuildable observation model
If (success)
 Call: ACT_IMPROVE outgoing message

Update: Unit Garrisoning
Message Name:
UPD_GARRISON
Description:
Update to indicate whether a given unit can garrison its current location
Message Arguments:

@bool success //set true if the unit is garrisoning a city
@int armyID //ID of the unit that is now garrisoning

Triggered By:
QU_GARRISON
State update:
-change garrisoning Boolean variable for armyID in my_army_locations array to true
Call: Garrisoning observation model

Update: Unit Stopped Garrisoning
Message Name:
UPD_UNGARRISON
Description:
Update to indicate whether a given unit can stop garrisoning its current location
Message Arguments:

@bool success //set true if the unit could stop garrisoning
@int armyID //ID of the unit that is now ungarrisoned

Triggered By:
QU_UNGARRISON
State update:
-change garrisoning Boolean variable for armyID in my_army_locations array to false
Call: StoppedGarrisoning observation model

Update: City Attackable
Message Name:
UPD_CITY_ATTACKABLE
Description:
Update to indicate whether a given unit can attack a given city
Message Arguments:

@bool success //set true if you can attack the city
@int armyID //ID of the unit that will attack
@int x_pos //x-position of city that will be attacked
@int y_pos //y-position of city that will be attacked

Triggered By:

70

QU_ATTACK_CITY
State update:
Call: CityAttackable observation model

Update: Unit Attackable
Message Name:
UPD_UNIT_ATTACKABLE
Description:
Update to indicate whether a given unit you control can attack an enemy unit
Message Arguments:

@bool success //set true if you can attack the enemy unit
@int armyID //ID of the unit that will attack
@int x_pos //x-position of army that you will attack with
@int y_pos //y-position of army that you will attack with

Triggered By:
QU_ATTACK_UNIT
State update:
Call: UnitAttackable observation model

City Destroyed
Message Name:
DESTROYED_CITY
Description:
Update to indicate that one of your cities has been destroyed
Message Arguments:

@int cityID //ID of city destroyed
Triggered By:
-one of your cities being destroyed
State update:
Remove enemy city from enemy_city_locations array
num_enemy_cities--
Call: MyCityDestroyed observation model

Unit Destroyed
Message Name:
DESTROYED_UNIT
Description:
Update to indicate that one of your units has been destroyed
Message Arguments:

@int armyID //ID of army destroyed
Triggered By:
-one of your units being destroyed
State update:
Remove unit with ID of armyID from my_army_locations array
num_my_armies--
Call: MyUnitDestroyed observation model

71

Game Turn passed
Message Name:
GAME_TICK
Description:
Update to indicate the end of any turn
Message Arguments:

none
Triggered By:
-Any turn ending
State update:
curr_turn++
Call: TurnOver observation model

Your Turn begins
Message Name:
GAME_MYTURN
Description:
Update to indicate that it is now your turn
Message Arguments:

none
Triggered By:
-Enemy turns ending
State update:
Call: MyTurn observation model

Player ID
Message Name:
GAME_MY_ID
Description:
Update to tell you what your player ID is
Message Arguments:

@int playerID //your player ID
Triggered By:
-game starting
State update:
my_player_id = playerID
Call: MyID observation model

Number of Players
Message Name:
GAME_NUM_PLAYERS
Description:
Update to tell you how many players are in the current game
Message Arguments:

72

@int num_players //total number of players
Triggered By:
1) game starting
2) enemy player has been defeated
State update:
num_enemy_players = num_players – 1;
Call: NumPlayers observation model
Note: Although it is supported in TIELT, CTP2 does not currently send this
message

Program Start
Message Name:
CTP2_START
Description:
Message to indicate start of CTP2 program
Message Arguments:

none
Triggered By:
- program starting
State update:

Call: Connected observation model
Call: HELLO outgoing message

Game Start
Message Name:
GAME_START
Description:
Message to indicate start of game
Message Arguments:

none
Triggered By:
- game starting
State update:
Call: GameStarted observation model

Game Lost
Message Name:
GAME_LOSE
Description:
Update to indicate a loss
Message Arguments:

none
Triggered By:
-losing the game
State update:
Call: Lose observation model

73

Game Won
Message Name:
GAME_WIN
Description:
Update to indicate a win
Message Arguments:

none
Triggered By:
-winning the game
State update:
Call: Win observation model

Game Finished
Message Name:
GAME_DONE
Description:
Message to indicate completion of game
Message Arguments:

none
Triggered By:
-game complete
State update:
Call: GameOver observation model

Program End
Message Name:
CTP2_END
Description:
Message to indicate end of CTP2 program
Message Arguments:

none
Triggered By:
- program ending
State update:
Call: Disconnected observation model

Game Loaded
Message Name:
UPD_LOAD
Description:
Indicates success or failure of loading a game
Message Arguments:

@bool success //set true if game was loaded, false otherwise
Triggered By:
GAME_LOAD

74

State update:
Call: GameLoaded observation model

Game Saved
Message Name:
UPD_SAVE
Description:
Indicates success or failure of saving a game
Message Arguments:

@bool success //set true if game was saved, false otherwise
Triggered By:
GAME_SAVE
State update:
Call: GameSaved observation model

Table 4: Call to Power 2 Incoming Messages

4.4 Communication Protocol
The communication protocol implemented by the TIELT – Call to Power 2

system may not have been entirely apparent from the list of messages used above. This

section will examine the protocol from a broader perspective.

When Call to Power 2 is launched, it asks the user to begin the experiment in

TIELT. When it detects a connection on the specified port, it sends a CTP2_START()

message to TIELT. TIELT responds by sending HELLO(). Once an individual scenario

has begun, Call to Power sends the GAME_START() message. At this point, TIELT

changes the internal state of the game to “Playing”. Then after the scenario is loaded,

Call to Power 2 sends the GAME_MY_ID() message to inform TIELT of the ID of the

player it is controlling. At this point the game may begin.

At the start of any of the player’s turns, Call to Power 2 will send

UPD_ARMY_XY() messages to indicate the positions of all the player’s units. After

this state update, the GAME_MYTURN() message is sent to TIELT indicating that any

desired actions can now be sent. As an example, to settle a city, TIELT would issue the

75

QU_CITY_BUILDABLE message for one of its Settlers. If the Settler can build a city

on its current location, Call to Power 2 will respond by setting the first argument of

UPD_CITY_BUILDABLE() to true and send this message to TIELT. TIELT sees that

the action is possible and automatically responds with the ACT_SETTLE() message for

this Settler. After the city has been built, Call to Power 2 responds with the

UPD_SETTLED_CITY_ID() message to indicate the integer ID and location of the

newly built city. Actions like this continue until the agent wishes to end the current turn,

at which point it sends the END_TURN() message.

Turns continue in this manner until a game is either won or lost. If, for example,

the game is won, Call to Power 2 will send the GAME_WIN() message to TIELT. Then

after the scenario is closed, it will send the GAME_DONE() message to TIELT, and

TIELT will change the game state from “Playing” to “NotPlaying”. Finally, once the

program is closed, the CTP2_END() message is sent to TIELT to terminate the

experiment. The example just described is modeled below in Figure 23. The green box

in Figure 23 indicates all the actions taken in a single turn.

76

Figure 23: TIELT – CTP2 Communication Protocol

77

5. Sample Session

Now we can show a sample session of the game played with the fully integrated

TIELT – Call to Power 2 system.

First, the system is connected and the experiment started. Note that the Connected()

observation model was triggered, indicating that the game has started.

Figure 24: Start of Enhanced Session

Then an individual scenario is started and we receive state updates at the start of our turn

indicating that we have two settler units with IDs of 0 and 1 at map location (16, 65).

78

Figure 25: First Turn with Enhanced Session

79

We attempt to move the settlers to the locations we desire, in this case (15, 65) and

(18,65) with the QueryMoveable() action model. Then we settle new cities by sending

the QueryCityBuildable() action model. Once these cities are settled, we receive the

CitySettled() observation models to indicate the IDs and positions of these cities. Note

that since settling a city destroys the Settler, we also receive a MyUnitDestroyed()

message indicating the ID of the Settlers that were destroyed.

Figure 26: Building a City

We attempt to build Warrior units in these cities with the QueryUnitBuildable() action

model. Note that 70 is the internal identification given to indicate Warrior units. We

receive the UnitBuildable() updates with success set to true indicating that these units are

now being built in the build queue.

80

Figure 27: Producing Military Units

We let a few turns pass by sending the EndTurn() action model. Within a few turns the

warriors are finished building. The NewUnitCompleted() observation model is triggered

for each successfully built unit indicating the unit’s ID and position.

81

Figure 28: New Units Completed

We now attempt to have one warrior garrison its current location by issuing the

QueryGarrison() action model, and have the other Warrior move to location (19,63) to

explore the surrounding area.

82

Figure 29: Exploring the Map

We now add granary (a city improvement) to the build queue in each city to help its

production by issuing the QueryImprovementBuildable() action model. We receive the

ImprovementBuildable() observation model with success set to true, indicating that the

Granaries are in the build queue.

83

Figure 30: Building City Improvements

Next we will tell our garrisoning Warrior to ungarrison with the QueryUngarrison()

action model so that we can use it to explore the map. We receive the

StoppedGarrisoning() observation model with success set to true indicating that it has

successfully stopped garrisoning.

84

Figure 31: Defending a City

Advancing later into the game, we have more units and have explored more of the map.

We issue a query for enemy cities within visible range with the QueryEnemyCity() action

model with our Warrior on (24, 10), and receive the NearEnemyCity() observation model

telling us that there is an enemy city at (24, 11) on the map.

85

Figure 32: Attacking an Enemy City

Next we attempt to attack the enemy city that has been discovered at (24, 11) by issuing

the QueryAttackCity() action model. The attack succeeds and we receive the

EnemyCityDestroyed() observation model indicating that the city at (24, 11) has been

destroyed. Then we query for remaining enemy units with the QueryEnemyUnit() action

model. We receive two NearEnemyUnit() observation models for the enemy Hoplite and

Settler on (24, 11).

86

Figure 33: Attack Success

We attempt to attack the enemy Hoplite with the QueryAttackUnit() action model. Our

Warrior dies in the process and we receive the MyUnitDestroyed() observation model

indicating that the Warrior with armyID 1 has been destroyed.

87

Figure 34: Attacking Enemy Unit

88

6. Conclusions

6.1 Summary
 This thesis has detailed the work require to integrate Call to Power 2 with TIELT.

A model of the rules of the game world was first defined within TIELT, and the desired

actions and percepts an agent can take to play a complete subset of the game were

specified. Then the existing Call to Power 2 API was modified and enhanced in order to

both allow an outside agent to play a complete subset of the game and to integrate

communications with TIELT. The work done for this project will provide an excellent

test bed for future experiments in the Transfer Learning Project. With the completion of

this thesis, intelligent agents can now be evaluated in conjunction with Call to Power 2.

The next step for this project will be to design, implement, and test an assortment of

transfer learning agents with the fully integrated TIELT – Call to Power 2 system.

6.2 Future work

The Call to Power 2 – TIELT Integration has laid the groundwork for a multitude

of later projects. As stated, we now have a test bed for evaluating the performance of

intelligent agents in conjunction with the DARPA Transfer Learning Project. Our next

milestone with this project is to construct agents that perform reasoning upon the current

state of the world, as modeled in TIELT, in order to evaluate an assortment of transfer

learning algorithms. Additionally, as our API and TIELT specifications are all freely

available, any AI researcher or hobbyist can make use of any part of this project for their

own endeavors.

89

 Bibliographical References
Aha, D. (2007) Testbed for Integrating and Evaluating Learning Techniques.

URL: http://www.tielt.org/presentations/TIELT Project Overview (17 Nov 2004).ppt.

Last checked: 4/16/07

Apolyton (2007).

URL: http://apolyton.net/forums/forumdisplay.php?s=&forumid=213]. Last checked:

4/16/07

E. L. Thorndike & R. S. Woodworth (1901). The Influence OF Improvement in

one Mental Function upon The Efficiency of other functions (I). Psychological Review,

8, 247-261. URL: http://psychclassics.yorku.ca/Thorndike/Transfer/transfer1.htm. Last

checked: 4/16/07

Gudevia, U. (2006). Integrating War Game Simulations with AI Testbeds:

Integrating Call To Power 2 with Tielt. Computer Science and Engineering. Lehigh

University.

Transfer Learning (2006). URL: http://www.darpa.mil/baa/BAA05-29.html. Last

checked: 4/16/07.

90

Vita
Joseph Henry Souto was born in Morristown, NJ to Joseph and Pamela Souto. He

attended Lehigh University from the fall of 2000 through the spring of 2004, receiving a

B.S. in Computer Engineering with honors. He returned to graduate school at Lehigh

University in the fall of 2005 and will receive his Master’s in the spring of 2007.

